Cargando…

Classical and quantum dynamics : from classical paths to path integrals

Detalles Bibliográficos
Autor principal: Dittrich, Walter (autor)
Otros Autores: Reuter, Martin, 1958-
Formato: Libro
Lenguaje:English
Publicado: Berlin : Springer, c2001.
Edición:Third Edition
Colección:Advanced texts in physics,
Materias:
Tabla de Contenidos:
  • Machine generated contents note: Introduction
  • 1. The Action Principles in Mechanics
  • 2. The Action Principle in Classical Electrodynamics
  • 3. Application of the Action Principles
  • 4. Jacobi Fields, Conjugate Points
  • 5. Canonical Transformations
  • 6. The Hamilton-Jacobi Equation
  • 7. Action-Angle Variables
  • 8. The Adiabatic Invariance of the Action Variables
  • 9. Time-Independent Canonical Perturbation Theory
  • 10. Canonical Perturbation Theory with Several Degrees of Freedom
  • 11. Canonical Adiabatic Theory
  • 12. Removal of Resonances
  • 13. Superconvergent Perturbation Theory, KAM Theorem (Introduction)
  • 14. Poincaré Surface of Sections, Mappings
  • 15. The KAM Theorem
  • 16. Fundamental Principles of Quantum Mechanics
  • 17. Functional Derivative Approach
  • 18. Examples for Calculating Path Integrals
  • 19. Direct Evaluation of Path Integrals
  • 20. Linear Oscillator with Time-Dependent Frequency
  • 21. Propagators for Particles in an External Magnetic Field
  • 22. Simple Applications of Propagator Functions
  • 23. The WKB Approximation
  • 24. Computing the trace
  • 25. Partition Function for the Harmonic Oscillator
  • 26. Introduction to Homotopy Theory
  • 27. Classical Chem-Simons Mechanics
  • 28. Semiclassical Quantization
  • 29. The "Maslov Anomaly" for the Harmonic Oscillator
  • 30. Maslov Anomaly and the Morse Index Theorem
  • 31. Berry's Phase
  • 32. Classical Analogues to Berry's Phase
  • 33. Berry Phase and Parametric Harmonic Oscillator
  • 34. Topological Phases in Planar Electrodynamics
  • References
  • Index.