Cargando…
Classical and quantum dynamics : from classical paths to path integrals
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro |
Lenguaje: | English |
Publicado: |
Berlin :
Springer,
c2001.
|
Edición: | Third Edition |
Colección: | Advanced texts in physics,
|
Materias: |
Tabla de Contenidos:
- Machine generated contents note: Introduction
- 1. The Action Principles in Mechanics
- 2. The Action Principle in Classical Electrodynamics
- 3. Application of the Action Principles
- 4. Jacobi Fields, Conjugate Points
- 5. Canonical Transformations
- 6. The Hamilton-Jacobi Equation
- 7. Action-Angle Variables
- 8. The Adiabatic Invariance of the Action Variables
- 9. Time-Independent Canonical Perturbation Theory
- 10. Canonical Perturbation Theory with Several Degrees of Freedom
- 11. Canonical Adiabatic Theory
- 12. Removal of Resonances
- 13. Superconvergent Perturbation Theory, KAM Theorem (Introduction)
- 14. Poincaré Surface of Sections, Mappings
- 15. The KAM Theorem
- 16. Fundamental Principles of Quantum Mechanics
- 17. Functional Derivative Approach
- 18. Examples for Calculating Path Integrals
- 19. Direct Evaluation of Path Integrals
- 20. Linear Oscillator with Time-Dependent Frequency
- 21. Propagators for Particles in an External Magnetic Field
- 22. Simple Applications of Propagator Functions
- 23. The WKB Approximation
- 24. Computing the trace
- 25. Partition Function for the Harmonic Oscillator
- 26. Introduction to Homotopy Theory
- 27. Classical Chem-Simons Mechanics
- 28. Semiclassical Quantization
- 29. The "Maslov Anomaly" for the Harmonic Oscillator
- 30. Maslov Anomaly and the Morse Index Theorem
- 31. Berry's Phase
- 32. Classical Analogues to Berry's Phase
- 33. Berry Phase and Parametric Harmonic Oscillator
- 34. Topological Phases in Planar Electrodynamics
- References
- Index.