Cargando…
Mathematical proofs : a transition to advanced mathematics
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Libro |
Lenguaje: | English |
Publicado: |
Boston :
Addison Wesley,
[2003]
|
Materias: |
Tabla de Contenidos:
- Machine generated contents note: COMMUNICATING MATHEMATICS
- Learning mathematics 01
- What others have said about writing 03
- Mathematical writing 04
- Using symbols 05
- Writing mathematical expressions 07
- Common words and phrases in mathematics 08
- Some closing comments about writing 11
- SETS
- 1.1. Describing a set 13
- 1.2. Special sets 15
- 1.3. Subsets 16
- 1.4. Set operations 18
- 1.5. Indexed collections of sets 21
- 1.6. Partitions of sets 23
- 1.7. Cartesian products of sets 24
- Exercises for chapter 1 24
- LOGIC
- 2.1. Statements 29
- 2.2. The negation of a statement 31
- 2.3. The disjunction and conjunction of statements 32
- 2.4. The implication 33
- 2.5. More on implications 35
- 2.6. The biconditional 36
- 2.7. Tautologies and contradictions 38
- 2.8. Logical equivalence 39
- 2.9. Some fundamental properties of logical equivalence 41
- 2.10. Characterizations of statements 42
- 2.11. Quantified statements and their negatiors 44
- Exercises for chapter 2 46
- DIRECT PROOF AND PROOF BY CONTRAPOSITIVE
- 3.1. Trivial and vacuous proofs 51
- 3.2. Direct proofs 53
- 3.3. Proof by contrapositive 56
- 3.4. Proof by cases 60
- 3.5. Proof evaluations 63
- Exercises for chapter 3 64
- MORE ON DIRECT PROOF AND PROOF BY CONTRAPOSITIVE
- 4.1. Proofs involving divisibility of integers 67
- 4.2. Proofs involving congruence of integers 70
- 4.3. Proofs involving real numbers 73
- 4.4. Proofs involving sets 74
- 4.5. Fundamental properties of set operations 77
- 4.6. Proofs involving Cartesian products of sets 79
- Exercises for chapter 4 80
- PROOF BY CONTRADICTION
- 5.1. Proof by contradiction 83
- 5.2. Examples of proof by contradiction 84
- 5.3. The three prisoners problem 85
- 5.4. Other examples of proof by contradiction 87
- 5.5. The irrationality of /2 87
- 5.6. A review of the three proof techniques 88
- Exercises for chapter 5 90
- PROVE OR DISPROVE
- 6.1. Conjectures in mathematics 93
- 6.2. A review of quantifiers 96
- 6.3. Existence proofs 98
- 6.4. A Review of negations of quantified statements 100
- 6.5. Counterexamples 101
- 6.6. Disproving statements 103
- 6.7. Testing statements 105
- 6.8. A quiz of "prove or disprove" problems 107
- Exercises for chapter 6 108
- EQUIVALENCE RELATIONS
- 7.1. Relations 113
- 7.2. Reflexive, symmetric, and transitive relations 114
- 7.3. Equivalence relations 116
- 7.4. Properties of equivalence classes 119
- 7.5. Congruence modulo n 123
- 7.6. The integers modulo n 127
- Exercises for chapter 7 130
- FUNCTIONS
- 8.1. The definition of function 135
- 8.2. The set of all functions from A to B 138
- 8.3. One-to-one and onto functions 138
- 8.4. Bijective functions 140
- 8.5. Composition of functions 143
- 8.6. Inverse functions 146
- 8.7. Permutations 149
- Exercises for chapter 8 150
- MATHEMATICAL INDUCTION
- 9.1. The well-ordering principle 153
- 9.2. The principle of mathematical induction 155
- 9.3. Mathematical induction and sums of numbers 158
- 9.4. Mathematical induction and inequalities 162
- 9.5. Mathematical induction and divisibility 163
- 9.6. Other examples of induction proofs 165
- 9.7. Proof by minimum counterexample 166
- 9.8. The strong form of induction 168
- Exercises for chapter 9 171
- CARDINALITIES OF SETS
- 10.1. Numerically equivalent sets 176
- 10.2. Denumerable sets 177
- 10.3. Uncountable sets 183
- 10.4. Comparing cardinalities of sets 188
- 10.5. The Schröder-Berstein theorem 191
- Exercises for chapter 10 194
- PROOFS IN NUMBER THEORY
- 11.1. Divisibility properties of integers 197
- 11.2. The division algorithm 198
- 11.3. Greatest common divisors 202
- 11.4. The Euclidean algorithm 204
- 11.5. Relatively prime integers 206
- 11.6. The fundamental theorem of arithmetic 208
- 11.7. Concepts involving sums of divisors 210
- Exercises for chapter 11 211
- PROOFS IN CALCULUS
- 12.1. Limits of sequences 215
- 12.2. Infinite series 220
- 12.3. Limits of functions 224
- 12.4. Fundamental properties of limits of functions 230
- 12.5. Continuity 235
- 12.6. Differentiability 237
- Exercises for Chapter 12 239
- PROOFS IN GROUP THEORY
- 13.1. Binary operations 243
- 13.2. Groups 247
- 13.3. Permutation groups 252
- 13.4. Fundamental properties of groups 255
- 13.5. Subgroups 257
- 13.6. Isomorphic groups 260
- Exercises for chapter 13 263.