|
|
|
|
LEADER |
00000cam a22000002a 4500 |
001 |
ocm48958382 |
003 |
OCoLC |
005 |
20141204200546.0 |
008 |
080424s2002 mau b 001 0 eng d |
035 |
|
|
|a (Sirsi) i9780817642853
|
040 |
|
|
|a DLC
|c DLC
|d UV#
|
020 |
|
|
|a 0817642854 (pasta dura)
|
020 |
|
|
|a 9780817642853 (pasta dura)
|
020 |
|
|
|a 3764342854 (rústica)
|
020 |
|
|
|a 9783764342852 (rústica)
|
050 |
0 |
4 |
|a QA331.5
|b K72 I4 2002
|
082 |
0 |
0 |
|a 515/.8
|2 21
|
100 |
1 |
|
|a Krantz, Steven G.
|q (Steven George),
|d 1951-
|
245 |
1 |
4 |
|a The implicit function theorem :
|b history, theory, and applications /
|c Steven G. Krantz, Harold R. Parks.
|
260 |
|
|
|a Boston :
|b Birkhäuser,
|c c2002.
|
300 |
|
|
|a xi, 163 p. ;
|c 24 cm.
|
500 |
|
|
|a Glosario: p. [145]-150.
|
504 |
|
|
|a Incluye bibliografía (p. [151]-159) e índice.
|
505 |
2 |
|
|a Implicit functions -- An informal version of the implicit function theorem -- The implicit function theorem paradigm -- Historical introduction -- Newton -- Lagrange -- Cauchy -- The inductive proof of the implicit function theorem -- The classical approach to the implicit function theorem -- The contraction mapping fixed point principle -- The rank theorem and the decomposition theorem -- A counterexample -- Ordinary differential equations -- Numerical homotopy methods -- Equivalent definitions of a smooth surface -- Smoothness of the distance function -- The Weierstrass preparation theorem -- Implicit function theorems without differentiability -- An inverse function theorem for continuous mappings -- Some singular cases of the implicit function theorem -- Analytic implicit function theorems -- Hadamard's global inverse function theorem -- The implicit function theorem via the Newton-Raphson method -- The Nash-Moser implicit function theorem.
|
650 |
|
4 |
|a Funciones implícitas.
|
700 |
1 |
|
|a Parks, Harold R.,
|d 1949- ,
|e coaut.
|
901 |
|
|
|a Z0
|b UV#
|
902 |
|
|
|a DGBUV
|
596 |
|
|
|a 10
|
942 |
|
|
|c LIBRO
|
999 |
|
|
|c 214506
|d 214506
|