|
|
|
|
LEADER |
00000cam a22000002a 4500 |
001 |
ocm34150978 |
003 |
UV# |
005 |
20220826103457.0 |
008 |
100205s1996 nyua b 001 0 eng d |
999 |
|
|
|c 231451
|d 231451
|
020 |
|
|
|a 0824793242 (pasta dura)
|
020 |
|
|
|a 9780824793241 (pasta dura)
|
040 |
|
|
|a DLC
|b spa
|c DLC
|d UV#
|
050 |
0 |
4 |
|a QA649
|b B43 1996
|
082 |
0 |
0 |
|a 516.3/7
|2 20
|
100 |
1 |
|
|a Beem, John K.,
|d 1942-
|9 381015
|e autor
|
245 |
1 |
0 |
|a Global Lorentzian geometry /
|c John K. Beem, Paul E. Ehrlich, Kevin L. Easley.
|
250 |
|
|
|a 2nd ed.
|
260 |
|
|
|a New York :
|b Marcel Dekker,
|c c1996.
|
300 |
|
|
|a xiv, 635 p. :
|b il. ;
|c 24 cm.
|
490 |
0 |
|
|a Monographs and textbooks in pure and applied mathematics ;
|v 202
|
504 |
|
|
|a Incluye bibliografía (p. 587-616) e índice.
|
505 |
0 |
|
|a 1. Introduction: Riemannian themes in Lorentzian geometry -- 2. Connections and curvature -- 3. Lorentzian manifolds and causality -- 4. Lorentzian distance -- 5. Examples of space-times -- 6. Completeness and extendibility -- 7. Stability of completeness and incompleteness -- 8. Maximal geodesics and causally disconnected space-times -- 9. The Lorentzian cut locus -- 10. Morse index theory on Lorentzian manifolds -- 11. Some results in global Lorentzian geometry -- 12. Singularities -- 13. Gravitational plane space-times -- 14. The splitting problem in global Lorentzian geometry -- App. A. Jacobi fields and Toponogov's theorem for Lorentzian manifolds / Steven G. Harris -- App. B. From the Jacobi, to a Riccati, to the Raychaudhuri equation: Jacobi tensor fields and the exponential map revisited.
|
650 |
|
7 |
|a Geometría diferencial
|9 354487
|
650 |
|
7 |
|a Relatividad (Física)
|9 355827
|
700 |
1 |
|
|a Ehrlich, Paul E.,
|d 1948-
|e autor
|9 381016
|
700 |
1 |
|
|a Easley, Kevin L.,
|d 1956-
|9 381017
|e autor
|
901 |
|
|
|a Z0
|b UV#
|
902 |
|
|
|a DGBUV
|
942 |
|
|
|c LIBRO
|2 lcc
|