|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
ocm28293875 |
003 |
OCoLC |
005 |
20150815143927.0 |
008 |
101117t19941994nyua b 001 0 eng d |
035 |
|
|
|a (Sirsi) i9780387941080
|
040 |
|
|
|a DLC
|b eng
|c DLC
|d UV#
|
020 |
|
|
|a 0387941088 (New York)
|
020 |
|
|
|a 9780387941080 (New York)
|
020 |
|
|
|a 3540941088 (Berlin)
|
020 |
|
|
|a 9783540941088 (Berlin)
|
050 |
0 |
4 |
|a QA300
|b P42 1994
|
082 |
0 |
0 |
|a 515
|2 20
|
100 |
1 |
|
|a Pedrick, George.
|9 385282
|
245 |
1 |
2 |
|a A first course in analysis /
|c George Pedrick.
|
260 |
|
|
|a New York
|a Berlin :
|b Springer-Verlag,
|c 1994, 1994.
|
300 |
|
|
|a xxi, 278 páginas :
|b ilustraciones ;
|c 24 cm.
|
490 |
0 |
|
|a Undergraduate texts in mathematics
|
504 |
|
|
|a Incluye bibliografía (páginas 266-267) e índice.
|
505 |
0 |
|
|a 4. The elementary functions. 5. Uniformity. The Heine-Borel theorem. 6. Uniform convergence. A nowhere differentiable continuous function. 7. The Weierstrass approximation theorem -- Appendix. A Space-filling continuous curve -- Ch. 4. Differentiation. 1. Differential and derivative. Tangent line. 2. The foundations of differentiation. 3. Curve sketching. The mean-value theorem. 4. Taylor's theorem. 5. Functions defined Implicitly -- Ch. 5. Integration. 1. Definitions. Darboux theorem. 2. Foundations of integral calculus. The fundamental theorem of calculus. 3. The nature of integrability. Lebesgue's theorem. 4. Improper integral. 5. Arclength. Bounded variation -- A word about the Stieltjes integral and measure theory -- Ch. 6. Infinite series. 1. The vibrating string. 2. Convergence: general considerations. 3. Convergence: series of positive terms. 4. Computation with series. 5. Power series. 6. Fourier series.
|
650 |
|
4 |
|a Análisis matemático.
|
901 |
|
|
|a Z0
|b UV#
|
902 |
|
|
|a DGBUV
|
596 |
|
|
|a 2 10
|
942 |
|
|
|c LIBRO
|6 _
|
999 |
|
|
|c 237565
|d 237565
|