Cargando…

Applied nonlinear dynamics : analytical, computational, and experimental methods /

Since Poincare's early work on the nonlinear dynamics of the n-body problem in celestial mechanics, the twentieth century has seen an explosion of interest in nonlinear systems. Lorenz's study of a deterministic, third-order system of weather dynamics showed that this system demonstrated a...

Descripción completa

Detalles Bibliográficos
Autor principal: Nayfeh, Ali Hasan, 1933-
Otros Autores: Balachandran, Balakumar
Formato: Libro
Lenguaje:English
Publicado: New York : Wiley, c1995.
Colección:Wiley series in nonlinear science.
Materias:
Acceso en línea:Contributor biographical information
Publisher description
Table of Contents

MARC

LEADER 00000cam a22000002a 4500
001 ocm30739496
003 OCoLC
005 20220809150453.0
008 120926s1995 nyua b 001 0 eng
010 |a  94003659 
035 |a (Sirsi) i9780471593485 
040 |a DLC  |b eng  |c DLC  |d UV# 
015 |a GB95-55573 
020 |a 0471593486 
020 |a 9780471593485 
035 |a (OCoLC)30739496  |z (OCoLC)32925591 
050 0 0 |a QA845  |b N39 1995 
082 0 0 |a 515/.352  |2 20 
084 |a 31.81  |2 bcl 
100 1 |a Nayfeh, Ali Hasan,  |d 1933- 
245 1 0 |a Applied nonlinear dynamics :  |b analytical, computational, and experimental methods /  |c Ali H. Nayfeh, Balakumar Balachandran. 
260 |a New York :  |b Wiley,  |c c1995. 
300 |a xv, 685 p. :  |b ilustraciones ;  |c 25 cm. 
490 1 |a Wiley series in nonlinear science 
500 |a "A Wiley-Interscience publication." 
504 |a Incluye bibliografía (p. 589-661) e índice. 
505 0 |a 1. Introduction -- 2. Equilibrium solutions -- 3. Periodic solutions -- 4. Quasiperiodic solutions -- 5. Chaos -- 6. Numerical methods -- 7. Tools to analyze motions -- 8. Control. 
520 |a Since Poincare's early work on the nonlinear dynamics of the n-body problem in celestial mechanics, the twentieth century has seen an explosion of interest in nonlinear systems. Lorenz's study of a deterministic, third-order system of weather dynamics showed that this system demonstrated a random-like behavior called chaos. Through numerical simulations made possible by modern computers, and through experiments with physical systems, the presence of chaos has been discovered in many dynamical systems. The phenomenon of chaos has, in turn, spurred a great revival of interest in nonlinear dynamics. 
520 8 |a Applied Nonlinear Dynamics provides a coherent and unified treatment of analytical, computational, and experimental methods and concepts of nonlinear dynamics. The fascinating phenomenon of chaos is explored, and the many routes to chaos are treated at length. Methods of controlling bifurcations and chaos are described. Numerical methods and tools to characterize motions are examined in detail, Poincare sections, Fourier spectra, polyspectra, autocorrelation functions, Lyapunov exponents, and dimension calculations are presented as analytical and experimental tools for analyzing the motion of nonlinear systems. This book contains numerous worked-out examples that illustrate the new concepts of nonlinear dynamics. Moreover, it contains many exercises that can be used both to reinforce concepts discussed in the chapters and to assess the progress of students. Students who thoroughly cover this book will be well prepared to make significant contributions in research efforts. 
590 |a [Reimpresión], 2004: USBI-X. 
650 7 |a Dinámica  |9 356460 
650 4 |a Teorías no lineales.  |9 356203 
700 1 |a Balachandran, Balakumar.  |9 379032 
830 0 |a Wiley series in nonlinear science. 
856 4 2 |3 Contributor biographical information  |u http://catdir.loc.gov/catdir/bios/wiley041/94003659.html 
856 4 2 |3 Publisher description  |u http://catdir.loc.gov/catdir/description/wiley032/94003659.html 
856 4 |3 Table of Contents  |u http://catdir.loc.gov/catdir/toc/onix03/94003659.html 
901 |a Z0  |b UV# 
596 |a 2 
942 |c LIBRO 
999 |c 259546  |d 259546