Cargando…

A first course in abstract algebra /

Detalles Bibliográficos
Autor principal: Fraleigh, John B.
Otros Autores: Katz, Victor J.
Formato: Libro
Lenguaje:English
Publicado: Boston : Addison-Wesley, 2003.
Edición:Seventh edition.
Materias:

MARC

LEADER 00000cam a2200000Ia 4500
001 ocm49312505
003 OCoLC
005 20220616085931.0
008 130807s2003 maua b 001 0 eng d
010 |a  2002019357 
035 |a (Sirsi) i9780201763904 
040 |a DLC  |b eng  |c DLC  |d UV# 
020 |a 0201763907 
020 |a 9780201763904 
020 |a 0321156080 
020 |a 9780321156082 
050 4 |a QA162  |b F72 F5 2003 
082 0 0 |a 512/.02 
100 1 |a Fraleigh, John B.  |9 399413 
245 1 2 |a A first course in abstract algebra /  |c John B. Fraleigh ; historical notes by Victor Katz. 
250 |a Seventh edition. 
260 |a Boston :  |b Addison-Wesley,  |c 2003. 
300 |a xii, 520 páginas :  |b ilustraciones ;  |c 24 cm. 
504 |a Incluye bibliografía (páginas 483-485) e índice. 
505 0 |a Sets and relations -- I. Groups and subgroups. Introduction and examples ; Binary operations ; Isomorphic binary structures ; Groups ; Subgroups ; Cyclic groups ; Generating sets and Cayley Digraphs -- II. Permutations, cosets, and direct products. Groups of permutations ; Orbits, cycles, and the alternating groups ; Cosets and the theorem of Lagrange ; Direct products and finitely generated Abelian groups ; Plane isometries -- III. Homomorphisms and factor groups. Homomorphisms ; Factor groups ; Factor-group computations and simple groups ; Group action on a set ; Applications of G-sets to counting -- IV. Rings and fields. Rings and fields ; Integral domains ; Fermat's and Euler's theorems ; The field of quotients of an integral domain ; Rings of polynomials ; Factorization of polynomials over a field ; Noncommutative examples ; Ordered rings and fields -- V. Ideals and factor rings. Homomorphisms and factor rings ; Prime and maximal ideas ; Gröbner bases for ideals -- VI. Extension fields. Introduction to extension fields ; Vector spaces ; Algebraic extensions ; Geometric constructions ; Finite fields -- VII. Advanced group theory. Isomorphism theorems ; Series of groups ; Sylow theorems ; Applications of the Sylow theory ; Free Abelian groups ; Free groups ; Group presentations -- VIII. Groups in topology. Simplicial complexes and homology groups ; Computations of homology groups ; More homology computations and applications ; Homological algebra -- IX. Factorization. Unique factorization domains ; Euclidean domains ; Gaussian integers and multiplicative norms -- X. Automorphisms and Galois theory. Automorphisms of fields ; The isomorphism extension theorem ; Splitting fields ; Separable extensions ; Totally inseparable extensions ; Galois theory ; Illustrations of Galois theory ; Cyclotomic extensions ; Insolvability of the quintic -- Appendix: Matrix algebra. 
650 7 |a Álgebra abstracta  |9 2554 
700 1 |a Katz, Victor J.  |9 380977 
776 0 8 |i Online version:  |a Fraleigh, John B.  |t First course in abstract algebra.  |b 7th ed.  |d Boston : Addison-Wesley, 2003  |w (OCoLC)655687263 
901 |a Z0  |b UV# 
902 |a DGBUV 
596 |a 10 
942 |c LIBRO 
999 |c 267502  |d 267502