|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
ocm49312505 |
003 |
OCoLC |
005 |
20220616085931.0 |
008 |
130807s2003 maua b 001 0 eng d |
010 |
|
|
|a 2002019357
|
035 |
|
|
|a (Sirsi) i9780201763904
|
040 |
|
|
|a DLC
|b eng
|c DLC
|d UV#
|
020 |
|
|
|a 0201763907
|
020 |
|
|
|a 9780201763904
|
020 |
|
|
|a 0321156080
|
020 |
|
|
|a 9780321156082
|
050 |
|
4 |
|a QA162
|b F72 F5 2003
|
082 |
0 |
0 |
|a 512/.02
|
100 |
1 |
|
|a Fraleigh, John B.
|9 399413
|
245 |
1 |
2 |
|a A first course in abstract algebra /
|c John B. Fraleigh ; historical notes by Victor Katz.
|
250 |
|
|
|a Seventh edition.
|
260 |
|
|
|a Boston :
|b Addison-Wesley,
|c 2003.
|
300 |
|
|
|a xii, 520 páginas :
|b ilustraciones ;
|c 24 cm.
|
504 |
|
|
|a Incluye bibliografía (páginas 483-485) e índice.
|
505 |
0 |
|
|a Sets and relations -- I. Groups and subgroups. Introduction and examples ; Binary operations ; Isomorphic binary structures ; Groups ; Subgroups ; Cyclic groups ; Generating sets and Cayley Digraphs -- II. Permutations, cosets, and direct products. Groups of permutations ; Orbits, cycles, and the alternating groups ; Cosets and the theorem of Lagrange ; Direct products and finitely generated Abelian groups ; Plane isometries -- III. Homomorphisms and factor groups. Homomorphisms ; Factor groups ; Factor-group computations and simple groups ; Group action on a set ; Applications of G-sets to counting -- IV. Rings and fields. Rings and fields ; Integral domains ; Fermat's and Euler's theorems ; The field of quotients of an integral domain ; Rings of polynomials ; Factorization of polynomials over a field ; Noncommutative examples ; Ordered rings and fields -- V. Ideals and factor rings. Homomorphisms and factor rings ; Prime and maximal ideas ; Gröbner bases for ideals -- VI. Extension fields. Introduction to extension fields ; Vector spaces ; Algebraic extensions ; Geometric constructions ; Finite fields -- VII. Advanced group theory. Isomorphism theorems ; Series of groups ; Sylow theorems ; Applications of the Sylow theory ; Free Abelian groups ; Free groups ; Group presentations -- VIII. Groups in topology. Simplicial complexes and homology groups ; Computations of homology groups ; More homology computations and applications ; Homological algebra -- IX. Factorization. Unique factorization domains ; Euclidean domains ; Gaussian integers and multiplicative norms -- X. Automorphisms and Galois theory. Automorphisms of fields ; The isomorphism extension theorem ; Splitting fields ; Separable extensions ; Totally inseparable extensions ; Galois theory ; Illustrations of Galois theory ; Cyclotomic extensions ; Insolvability of the quintic -- Appendix: Matrix algebra.
|
650 |
|
7 |
|a Álgebra abstracta
|9 2554
|
700 |
1 |
|
|a Katz, Victor J.
|9 380977
|
776 |
0 |
8 |
|i Online version:
|a Fraleigh, John B.
|t First course in abstract algebra.
|b 7th ed.
|d Boston : Addison-Wesley, 2003
|w (OCoLC)655687263
|
901 |
|
|
|a Z0
|b UV#
|
902 |
|
|
|a DGBUV
|
596 |
|
|
|a 10
|
942 |
|
|
|c LIBRO
|
999 |
|
|
|c 267502
|d 267502
|