Cargando…
Introduction to autonomous mobile robots
Robots móviles van desde el Sojourner de la misión Mars Pathfinder a los robots de limpieza en el metro de París. Este texto ofrece a los estudiantes y otros lectores interesados una introducción a los fundamentos de la robótica móvil, que abarca la mecánica, motor, y capas cognitivas sensoriales....
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Libro |
Lenguaje: | English |
Publicado: |
Cambridge, Mass. :
MIT Press,
2011, ©2011.
|
Edición: | 2a ed. |
Colección: | Intelligent robotics and autonomous agents
|
Materias: |
Tabla de Contenidos:
- Machine generated contents note: 1.Introduction
- 1.1.Introduction
- 1.2.An Overview of the Book
- 2.Locomotion
- 2.1.Introduction
- 2.1.1.Key issues for locomotion
- 2.2.Legged Mobile Robots
- 2.2.1.Leg configurations and stability
- 2.2.2.Consideration of dynamics
- 2.2.3.Examples of legged robot locomotion
- 2.3.Wheeled Mobile Robots
- 2.3.1.Wheeled locomotion: The design space
- 2.3.2.Wheeled locomotion: Case studies
- 2.4.Aerial Mobile Robots
- 2.4.1.Introduction
- 2.4.2.Aircraft configurations
- 2.4.3.State of the art in autonomous VTOL
- 2.5.Problems
- 3.Mobile Robot Kinematics
- 3.1.Introduction
- 3.2.Kinematic Models and Constraints
- 3.2.1.Representing robot position
- 3.2.2.Forward kinematic models
- 3.2.3.Wheel kinematic constraints
- 3.2.4.Robot kinematic constraints
- 3.2.5.Examples: Robot kinematic models and constraints
- 3.3.Mobile Robot Maneuverability
- 3.3.1.Degree of mobility
- 3.3.2.Degree of steerability
- 3.3.3.Robot maneuverability
- 3.4.Mobile Robot Workspace
- 3.4.1.Degrees of freedom
- 3.4.2.Holonomic robots
- 3.4.3.Path and trajectory considerations
- 3.5.Beyond Basic Kinematics
- 3.6.Motion Control (Kinematic Control)
- 3.6.1.Open loop control (trajectory-following)
- 3.6.2.Feedback control
- 3.7.Problems
- 4.Perception
- 4.1.Sensors for Mobile Robots
- 4.1.1.Sensor classification
- 4.1.2.Characterizing sensor performance
- 4.1.3.Representing uncertainty
- 4.1.4.Wheel/motor sensors
- 4.1.5.Heading sensors
- 4.1.6.Accelerometers
- 4.1.7.Inertial measurement unit (IMU)
- 4.1.8.Ground beacons
- 4.1.9.4.Active ranging
- 4.1.10.Motion/speed sensors
- 4.1.11.Vision sensors
- 4.2.Fundamentals of Computer Vision
- 4.2.1.Introduction
- 4.2.2.The digital camera
- 4.2.3.Image formation
- 4.2.4.Omnidirectional cameras.
- 4.2.5.Structure from stereo
- 4.2.6.Structure from motion
- 4.2.7.Motion and optical flow
- 4.2.8.Color tracking
- 4.3.Fundamentals of Image Processing
- 4.3.1.Image filtering
- 4.3.2.Edge detection
- 4.3.3.Computing image similarity
- 4.4.Feature Extraction
- Feature Extraction
- 4.5.Image Feature Extraction: Interest Point Detectors
- 4.5.1.Introduction
- 4.5.2.Properties of the ideal feature detector
- 4.5.3.Corner detectors
- 4.5.4.Invariance to photometric and geometric changes
- 4.5.5.Blob detectors
- 4.6.Place Recognition
- 4.6.1.Introduction
- 4.6.2.From bag of features to visual words
- 4.6.3.Efficient location recognition by using an inverted file
- 4.6.4.Geometric verification for robust place recognition
- 4.6.5.Applications
- 4.6.6.Other image representations for place recognition
- 4.7.Feature Extraction Based on Range Data (Laser, Ultrasonic)
- 4.7.1.Line fitting
- 4.7.2.Six line-extraction algorithms
- 4.7.3.Range histogram features
- 4.7.4.Extracting other geometric features
- 4.8.Problems
- 5.Mobile Robot Localization
- 5.1.Introduction
- 5.2.The Challenge of Localization: Noise and Aliasing
- 5.2.1.Sensor noise
- 5.2.2.Sensor aliasing
- 5.2.3.Effector noise
- 5.2.4.An error model for odometric position estimation
- 5.3.To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions
- 5.4.Belief Representation
- 5.4.1.Single-hypothesis belief
- 5.4.2.Multiple-hypothesis belief
- 5.5.Map Representation
- 5.5.1.Continuous representations
- 5.5.2.Decomposition strategies
- 5.5.3.State of the art: Current challenges in map representation
- 5.6.Probabilistic Map-Based Localization
- 5.6.1.Introduction
- 5.6.2.The robot localization problem
- 5.6.3.Basic concepts of probability theory
- 5.6.4.Terminology
- 5.6.5.The ingredients of probabilistic map-based localization.
- 5.6.6.Classification of localization problems
- 5.6.7.Markov localization
- 5.6.8.Kalman filter localization
- 5.7.Other Examples of Localization SyGlobally unique localization
- stems
- 5.7.1.Landmark-based navigation
- 5.7.2.Globally unique localization
- 5.7.3.Positioning beacon systems
- 5.7.4.Route-based localization
- 5.8. Autonomous Map Building
- 5.8.1. Introduction
- 5.8.2. SLAM: The simultaneous localization and mapping problem
- 5.8.3. Mathematical definition of SLAM
- 5.8.4. Extended Kalman Filter (EKF) SLAM
- 5.8.5. Visual SLAM with a single camera
- 5.8.6. Discussion on EKF SLAM
- 5.8.7. Graph-based SLAM
- 5.8.8. Particle filter SLAM
- 5.8.9. Open challenges in SLAM
- 5.8.10. Open source SLAM software and other resources
- 5.9. Problems
- 6. Planning and Navigation
- 6.1. Introduction
- 6.2. Competences for Navigation: Planning and Reacting
- 6.3. Path Planning
- 6.3.1. Graph search
- 6.3.2. Potential field path planning
- 6.4. Obstacle avoidance
- 6.4.1. Bug algorithm
- 6.4.2. Vector field histogram
- 6.4.3. The bubble band technique
- 6.4.4. Curvature velocity techniques
- 6.4.5. Dynamic window approaches
- 6.4.6. The Schlegel approach to obstacle avoidance
- 6.4.7. Nearness diagram
- 6.4.8. Gradient method
- 6.4.9. Adding dynamic constraints
- 6.4.10. Other approaches
- 6.4.11. Overview
- 6.5. Navigation Architectures
- 6.5.1. Modularity for code reuse and sharing
- 6.5.2. Control localization
- 6.5.3. Techniques for decomposition
- 6.5.4. Case studies: tiered robot architectures .