Cargando…

Categorical data analysis

Detalles Bibliográficos
Autor principal: Agresti, Alan
Formato: Libro
Lenguaje:English
Publicado: Hoboken, New Jersey : Wiley, ©2013.
Edición:Third edition.
Colección:Wiley series in probability and statistics ; 792
Materias:
Tabla de Contenidos:
  • 1. Introduction: distributions and inference for categorical data
  • 1.1. Categorical response data
  • 1.2. Distributions for categorical data
  • 1.3. Statistical inference for categorical data
  • 1.4. Statistical inference for binomial parameters
  • 1.5. Statistical inference for multinomial parameters
  • 1.6. Bayesian inference for binomial and multinomial parameters notes exercises
  • 2. Describing contingency tables
  • 2.1. Probability structure for contingency tables
  • 2.2. Comparing two proportions
  • 2.3. Conditional association in stratified 2x2 tables
  • 2.4. Measuring association in I x J tables
  • 3. Inference for two-way contingency tables
  • 3.1. Confidence intervals for association parameters
  • 3.2. Testing independence in two-way contingency tables
  • 3.3. Following-up chi-squared tests
  • 3.4. Two-way tables with ordered classifications
  • 3.5. Small-sample inference for contingency tables
  • 3.6. Bayesian inference for two-way contingency tables
  • 3.7. Extensions for multiway tables and nontabulated responses
  • 4. Introduction to generalized linear models
  • 4.1. The generalized linear model
  • 4.2. Generalized linear models for binary data
  • 4.3. Generalized linear models for counts and rates
  • 4.4. Moments and likelihood for generalized linear models
  • 4.5. Inference and model checking for generalized linear models
  • 4.6. Fitting generalized linear models
  • 4.7. Quasi-likelihood and generalized linear models
  • 5. Logistic regression
  • 5.1. Interpreting parameters in logistic regression
  • 5.2. Inference for logistic regression
  • 5.3. Logistic models with categorical predictors
  • 5.4. Multiple logistic regression
  • 5.5. Fitting logistic regression models
  • 6. Building, checking, and applying logistic regression models
  • 6.1. Strategies in model selection
  • 6.2. Logistic regression diagnostics
  • 6.3. Summarizing the predictive power of a model
  • 6.4. Mantel-haenszel and related methods for multiple 2x2 tables
  • 6.5. Detecting and dealing with infinite estimates
  • 6.6. Sample size and power considerations
  • 7. Alternative modeling of binary response data
  • 7.1. Probit and complementary log-log models
  • 7.2. Bayesian inference for binary regression
  • 7.3. Conditional logistic regression
  • 7.4. Smoothing: kernels, penalized likelihood, generalized additive models
  • 7.5. Issues in analyzing high-dimensional categorical data
  • 8. Models for multinomial responses
  • 8.1. Nominal responses: baseline-category logit models
  • 8.2. Ordinal responses: cumulative logit models
  • 8.3. Ordinal responses: alternative models
  • 8.4. Testing conditional independence in I x J x K tables
  • 8.5. Discrete-choice models
  • 8.6. Bayesian modeling of multinomial responses
  • 9. Loglinear models for contingency tables
  • 9.1. Loglinear models for two-way tables
  • 9.2. Loglinear models for independence and interaction in three-way tables
  • 9.3. Inference for loglinear models
  • 9.4. Loglinear models for higher dimensions
  • 9.5. The loglinear-logistic model connection
  • 9.6. Loglinear model fitting: likelihood equations and asymptotic distributions
  • 9.7. Loglinear model fitting: iterative methods and their application
  • 10. Building and extending loglinear models
  • 10.1. Conditional independence graphs and collapsibility
  • 10.2. Model selection and comparison
  • 10.3. Residuals for detecting cell-specific lack of fit
  • 10.4. Modeling ordinal associations
  • 10.5. Generalized loglinear and association models, correlation models, and correspondence analysis
  • 10.6. Empty cells and sparseness in modeling contingency tables
  • 10.7. Bayesian loglinear modeling
  • 11. Models for matched pairs
  • 11.1. Comparing dependent proportions
  • 11.2. Conditional logistic regression for binary matched pairs
  • 11.3. Marginal models for square contingency tables
  • 11.4. Symmetry, quasi-symmetry, and quasi-independence
  • 11.5. Measuring agreement between observers
  • 11.6. Bradley-terry model for paired preferences
  • 11.7. Marginal models and quasi-symmetry models for matched sets
  • 12. Clustered categorical data: marginal and transitional models
  • 12.1. Marginal modeling: maximum likelihood approach
  • 12.2. Marginal modeling: generalized estimating equations approach
  • 12.3. Quasi-likelihood and its gee multivariate extension: details
  • 12.4. Transitional models: markov chain and time series models
  • 13. Clustered categorical data: random effects models
  • 13.1. Random effects modeling of clustered categorical data
  • 13.2. Binary responses: the logistic-normal model
  • 13.3. Examples of random effects models for binary data
  • 13.4. Random effects models for multinomial data
  • 13.5. Multilevel models
  • 13.6. GLMM fitting, inference, and prediction
  • 13.7. Bayesian multivariate categorical modeling
  • 14. Other mixture models for discrete data
  • 14.1. Latent class models
  • 14.2. Nonparametric random effects models
  • 14.3. Beta-binomial models
  • 14.4. Negative binomial regression
  • 14.5. Poisson regression with random effects
  • 15. Non-model-based classification and clustering
  • 15.1. Classification: linear discriminant analysis
  • 15.2. Classification: tree-structured prediction
  • 15.3. Cluster analysis for categorical data
  • 16. Large- and small-sample theory for parametric models
  • 16.1. Delta method
  • 16.2. Asymptotic distributions of estimators of model parameters and cell probabilities
  • 16.3. Asymptotic distributions of residuals and goodness-of-fit statistics
  • 16.4. Asymptotic distributions for logit/loglinear models
  • 16.5. Small-sample significance tests for contingency tables
  • 16.6. Small-sample confidence intervals for categorical data
  • 16.7. Alternative estimation theory for parametric models
  • 17. Historical tour of categorical data analysis
  • 17.1. Pearson-Yule association controversy
  • 17.2. R. A. Fisher's contributions
  • 17.3. Logistic regression
  • 17.4. Multiway contingency tables and loglinear models
  • 17.5. Bayesian methods for categorical data
  • 17.6. A look forward, and backward
  • Appendix A. Statistical software for categorical data analysis
  • Appendix B. Chi-squared distribution values.