Cargando…
Categorical data analysis
Autor principal: | |
---|---|
Formato: | Libro |
Lenguaje: | English |
Publicado: |
Hoboken, New Jersey :
Wiley,
©2013.
|
Edición: | Third edition. |
Colección: | Wiley series in probability and statistics ;
792 |
Materias: |
Tabla de Contenidos:
- 1. Introduction: distributions and inference for categorical data
- 1.1. Categorical response data
- 1.2. Distributions for categorical data
- 1.3. Statistical inference for categorical data
- 1.4. Statistical inference for binomial parameters
- 1.5. Statistical inference for multinomial parameters
- 1.6. Bayesian inference for binomial and multinomial parameters notes exercises
- 2. Describing contingency tables
- 2.1. Probability structure for contingency tables
- 2.2. Comparing two proportions
- 2.3. Conditional association in stratified 2x2 tables
- 2.4. Measuring association in I x J tables
- 3. Inference for two-way contingency tables
- 3.1. Confidence intervals for association parameters
- 3.2. Testing independence in two-way contingency tables
- 3.3. Following-up chi-squared tests
- 3.4. Two-way tables with ordered classifications
- 3.5. Small-sample inference for contingency tables
- 3.6. Bayesian inference for two-way contingency tables
- 3.7. Extensions for multiway tables and nontabulated responses
- 4. Introduction to generalized linear models
- 4.1. The generalized linear model
- 4.2. Generalized linear models for binary data
- 4.3. Generalized linear models for counts and rates
- 4.4. Moments and likelihood for generalized linear models
- 4.5. Inference and model checking for generalized linear models
- 4.6. Fitting generalized linear models
- 4.7. Quasi-likelihood and generalized linear models
- 5. Logistic regression
- 5.1. Interpreting parameters in logistic regression
- 5.2. Inference for logistic regression
- 5.3. Logistic models with categorical predictors
- 5.4. Multiple logistic regression
- 5.5. Fitting logistic regression models
- 6. Building, checking, and applying logistic regression models
- 6.1. Strategies in model selection
- 6.2. Logistic regression diagnostics
- 6.3. Summarizing the predictive power of a model
- 6.4. Mantel-haenszel and related methods for multiple 2x2 tables
- 6.5. Detecting and dealing with infinite estimates
- 6.6. Sample size and power considerations
- 7. Alternative modeling of binary response data
- 7.1. Probit and complementary log-log models
- 7.2. Bayesian inference for binary regression
- 7.3. Conditional logistic regression
- 7.4. Smoothing: kernels, penalized likelihood, generalized additive models
- 7.5. Issues in analyzing high-dimensional categorical data
- 8. Models for multinomial responses
- 8.1. Nominal responses: baseline-category logit models
- 8.2. Ordinal responses: cumulative logit models
- 8.3. Ordinal responses: alternative models
- 8.4. Testing conditional independence in I x J x K tables
- 8.5. Discrete-choice models
- 8.6. Bayesian modeling of multinomial responses
- 9. Loglinear models for contingency tables
- 9.1. Loglinear models for two-way tables
- 9.2. Loglinear models for independence and interaction in three-way tables
- 9.3. Inference for loglinear models
- 9.4. Loglinear models for higher dimensions
- 9.5. The loglinear-logistic model connection
- 9.6. Loglinear model fitting: likelihood equations and asymptotic distributions
- 9.7. Loglinear model fitting: iterative methods and their application
- 10. Building and extending loglinear models
- 10.1. Conditional independence graphs and collapsibility
- 10.2. Model selection and comparison
- 10.3. Residuals for detecting cell-specific lack of fit
- 10.4. Modeling ordinal associations
- 10.5. Generalized loglinear and association models, correlation models, and correspondence analysis
- 10.6. Empty cells and sparseness in modeling contingency tables
- 10.7. Bayesian loglinear modeling
- 11. Models for matched pairs
- 11.1. Comparing dependent proportions
- 11.2. Conditional logistic regression for binary matched pairs
- 11.3. Marginal models for square contingency tables
- 11.4. Symmetry, quasi-symmetry, and quasi-independence
- 11.5. Measuring agreement between observers
- 11.6. Bradley-terry model for paired preferences
- 11.7. Marginal models and quasi-symmetry models for matched sets
- 12. Clustered categorical data: marginal and transitional models
- 12.1. Marginal modeling: maximum likelihood approach
- 12.2. Marginal modeling: generalized estimating equations approach
- 12.3. Quasi-likelihood and its gee multivariate extension: details
- 12.4. Transitional models: markov chain and time series models
- 13. Clustered categorical data: random effects models
- 13.1. Random effects modeling of clustered categorical data
- 13.2. Binary responses: the logistic-normal model
- 13.3. Examples of random effects models for binary data
- 13.4. Random effects models for multinomial data
- 13.5. Multilevel models
- 13.6. GLMM fitting, inference, and prediction
- 13.7. Bayesian multivariate categorical modeling
- 14. Other mixture models for discrete data
- 14.1. Latent class models
- 14.2. Nonparametric random effects models
- 14.3. Beta-binomial models
- 14.4. Negative binomial regression
- 14.5. Poisson regression with random effects
- 15. Non-model-based classification and clustering
- 15.1. Classification: linear discriminant analysis
- 15.2. Classification: tree-structured prediction
- 15.3. Cluster analysis for categorical data
- 16. Large- and small-sample theory for parametric models
- 16.1. Delta method
- 16.2. Asymptotic distributions of estimators of model parameters and cell probabilities
- 16.3. Asymptotic distributions of residuals and goodness-of-fit statistics
- 16.4. Asymptotic distributions for logit/loglinear models
- 16.5. Small-sample significance tests for contingency tables
- 16.6. Small-sample confidence intervals for categorical data
- 16.7. Alternative estimation theory for parametric models
- 17. Historical tour of categorical data analysis
- 17.1. Pearson-Yule association controversy
- 17.2. R. A. Fisher's contributions
- 17.3. Logistic regression
- 17.4. Multiway contingency tables and loglinear models
- 17.5. Bayesian methods for categorical data
- 17.6. A look forward, and backward
- Appendix A. Statistical software for categorical data analysis
- Appendix B. Chi-squared distribution values.