|
|
|
|
LEADER |
00000aam a2200000 a 4500 |
001 |
ocm75713694 |
003 |
UV# |
005 |
20161017124052.0 |
008 |
161017s2007 maua b 001 0 eng d |
010 |
|
|
|a 2007936880
|
020 |
|
|
|a 0817645225
|q (pasta dura)
|
020 |
|
|
|a 9780817645229
|q (pasta dura)
|
020 |
|
|
|a 9780817645335
|
020 |
|
|
|a 0817645330
|
040 |
|
|
|a UKM
|b spa
|c UKM
|d BAKER
|d OHX
|d BTCTA
|d UNA
|d YDXCP
|d NDD
|d IXA
|d DLC
|d MUQ
|d SZ9XM
|d OCLCQ
|d BDX
|d HDC
|d MUU
|d OCLCF
|d P4I
|d OCLCO
|d OCLCQ
|d S3O
|d UV#
|e rda
|
050 |
0 |
0 |
|a QA241
|b K58 2007
|
082 |
0 |
4 |
|a 512.74
|2 22
|
100 |
1 |
|
|a Knapp, Anthony W.
|9 381602
|
245 |
1 |
0 |
|a Advanced algebra
|c / Anthony W. Knapp.
|
260 |
|
|
|a Boston :
|b Birkhäuser ;
|c ©2007.
|
300 |
|
|
|a xxiv, 730 páginas :
|b ilustraciones ;
|c 24 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|
490 |
0 |
|
|a Cornerstones
|
500 |
|
|
|a "Along with a companion volume, Basic algebra."
|
504 |
|
|
|a Incluye bibliografía (páginas 713-716) e índice.
|
505 |
0 |
0 |
|t Of Basic Algebra
|g x --
|t Dependence among Chapters
|g xvi --
|t Guide for the Reader
|g xvii --
|g I
|t Transition to Modern Number Theory
|g 1 --
|g 1
|t Historical Background
|g 1 --
|g 2
|t Quadratic Reciprocity
|g 8 --
|g 3
|t Equivalence and Reduction of Quadratic Forms
|g 12 --
|g 4
|t Composition of Forms, Class Group
|g 24 --
|g 5
|t Genera
|g 31 --
|g 6
|t Quadratic Number Fields and Their Units
|g 35 --
|g 7
|t Relationship of Quadratic Forms to Ideals
|g 38 --
|g 8
|t Primes in the Progressions 4n + 1 and 4n + 3
|g 50 --
|g 9
|t Dirichlet Series and Euler Products
|g 56 --
|g 10
|t Dirichlet's Theorem on Primes in Arithmetic Progressions
|g 61 --
|g 11
|t Problems
|g 67 --
|g II
|t Wedderburn-Artin Ring Theory
|g 76 --
|g 1
|t Historical Motivation
|g 77 --
|g 2
|t Semisimple Rings and Wedderburn's Theorem
|g 81 --
|g 3
|t Rings with Chain Condition and Artin's Theorem
|g 87 --
|g 4
|t Wedderburn-Artin Radical
|g 89 --
|g 5
|t Wedderburn's Main Theorem
|g 94 --
|g 6
|t Semisimplicity and Tensor Products
|g 104 --
|g 7
|t Skolem-Noether Theorem
|g 111 --
|g 8
|t Double Centralizer Theorem
|g 114 --
|g 9
|t Wedderburn's Theorem about Finite Division Rings
|g 117 --
|g 10
|t Frobenius's Theorem about Division Algebras over the Reals
|g 118 --
|g 11
|t Problems
|g 120 --
|g III
|t Brauer Group
|g 123 --
|g 1
|t Definition and Examples, Relative Brauer Group
|g 124 --
|g 2
|t Factor Sets
|g 132 --
|g 3
|t Crossed Products
|g 135 --
|g 4
|t Hilbert's Theorem 90
|g 145 --
|g 5
|t Digression on Cohomology of Groups
|g 147 --
|g 6
|t Relative Brauer Group when the Galois Group Is Cyclic
|g 158 --
|g 7
|t Problems
|g 162 --
|g IV
|t Homological Algebra
|g 166 --
|g 2
|t Complexes and Additive Functors
|g 171 --
|g 3
|t Long Exact Sequences
|g 184 --
|g 4
|t Projectives and Injectives
|g 192 --
|g 5
|t Derived Functors
|g 202 --
|g 6
|t Long Exact Sequences of Derived Functors
|g 210 --
|g 7
|t Ext and Tor
|g 223 --
|g 8
|t Abelian Categories
|g 232 --
|g 9
|t Problems
|g 250 --
|g V
|t Three Theorems in Algebraic Number Theory
|g 262 --
|g 1
|t Setting
|g 262 --
|g 2
|t Discriminant
|g 266 --
|g 3
|t Dedekind Discriminant Theorem
|g 274 --
|g 4
|t Cubic Number Fields as Examples
|g 279 --
|g 5
|t Dirichlet Unit Theorem
|g 288 --
|g 6
|t Finiteness of the Class Number
|g 298 --
|g 7
|t Problems
|g 307 --
|g VI
|t Reinterpretation with Adeles and Ideles
|g 313 --
|g 1
|t p-adic Numbers
|g 314 --
|g 2
|t Discrete Valuations
|g 320 --
|g 3
|t Absolute Values
|g 331 --
|g 4
|t Completions
|g 342 --
|g 5
|t Hensel's Lemma
|g 349 --
|g 6
|t Ramification Indices and Residue Class Degrees
|g 353 --
|g 7
|t Special Features of Galois Extensions
|g 368 --
|g 8
|t Different and Discriminant
|g 371 --
|g 9
|t Global and Local Fields
|g 382 --
|g 10
|t Adeles and Ideles
|g 388 --
|g 11
|t Problems
|g 397 --
|g VII
|t Infinite Field Extensions
|g 403 --
|g 1
|t Nullstellensatz
|g 404 --
|g 2
|t Transcendence Degree
|g 408 --
|g 3
|t Separable and Purely Inseparable Extensions
|g 414 --
|g 4
|t Krull Dimension
|g 423 --
|g 5
|t Nonsingular and Singular Points
|g 428 --
|g 6
|t Infinite Galois Groups
|g 434 --
|g 7
|t Problems
|g 445 --
|g VIII
|t Background for Algebraic Geometry
|g 447 --
|g 1
|t Historical Origins and Overview
|g 448 --
|g 2
|t Resultant and Bezout's Theorem
|g 451 --
|g 3
|t Projective Plane Curves
|g 456 --
|g 4
|t Intersection Multiplicity for a Line with a Curve
|g 466 --
|g 5
|t Intersection Multiplicity for Two Curves
|g 473 --
|g 6
|t General Form of Bezout's Theorem for Plane Curves
|g 488 --
|g 7
|t Grobner Bases
|g 491 --
|g 8
|t Constructive Existence
|g 499 --
|g 9
|t Uniqueness of Reduced Grobner Bases
|g 508 --
|g 10
|t Simultaneous Systems of Polynomial Equations
|g 510 --
|g 11
|t Problems
|g 516 --
|g IX
|t The Number Theory of Algebraic Curves
|g 520 --
|g 1
|t Historical Origins and Overview
|g 520 --
|g 2
|t Divisors
|g 531 --
|g 3
|t Genus
|g 534 --
|g 4
|t Riemann-Roch Theorem
|g 540 --
|g 5
|t Applications of the Riemann-Roch Theorem
|g 552 --
|g 6
|t Problems
|g 554 --
|g X
|t Methods of Algebraic Geometry
|g 558 --
|g 1
|t Affine Algebraic Sets and Affine Varieties
|g 559 --
|g 2
|t Geometric Dimension
|g 563 --
|g 3
|t Projective Algebraic Sets and Projective Varieties
|g 570 --
|g 4
|t Rational Functions and Regular Functions
|g 579 --
|g 5
|t Morphisms
|g 590 --
|g 6
|t Rational Maps
|g 595 --
|g 7
|t Zariski's Theorem about Nonsingular Points
|g 600 --
|g 8
|t Classification Questions about Irreducible Curves
|g 604 --
|g 9
|t Affine Algebraic Sets for Monomial Ideals
|g 618 --
|g 10
|t Hilbert Polynomial in the Affine Case
|g 626 --
|g 11
|t Hilbert Polynomial in the Projective Case
|g 633 --
|g 12
|t Intersections in Projective Space
|g 635 --
|g 13
|t Schemes
|g 638 --
|g 14
|t Problems
|g 644 --
|t Hints for Solutions of Problems
|g 649.
|
650 |
|
4 |
|a Teoría algebraica de los números
|9 356213
|
942 |
|
|
|2 lcc
|c LIBRO
|6 _
|
999 |
|
|
|c 302203
|d 302203
|