Cargando…
Advanced algebra
Autor principal: | |
---|---|
Formato: | Libro |
Lenguaje: | English |
Publicado: |
Boston :
Birkhäuser ;
©2007.
|
Colección: | Cornerstones
|
Materias: |
Tabla de Contenidos:
- Of Basic Algebra x
- Dependence among Chapters xvi
- Guide for the Reader xvii
- I Transition to Modern Number Theory 1
- 1 Historical Background 1
- 2 Quadratic Reciprocity 8
- 3 Equivalence and Reduction of Quadratic Forms 12
- 4 Composition of Forms, Class Group 24
- 5 Genera 31
- 6 Quadratic Number Fields and Their Units 35
- 7 Relationship of Quadratic Forms to Ideals 38
- 8 Primes in the Progressions 4n + 1 and 4n + 3 50
- 9 Dirichlet Series and Euler Products 56
- 10 Dirichlet's Theorem on Primes in Arithmetic Progressions 61
- 11 Problems 67
- II Wedderburn-Artin Ring Theory 76
- 1 Historical Motivation 77
- 2 Semisimple Rings and Wedderburn's Theorem 81
- 3 Rings with Chain Condition and Artin's Theorem 87
- 4 Wedderburn-Artin Radical 89
- 5 Wedderburn's Main Theorem 94
- 6 Semisimplicity and Tensor Products 104
- 7 Skolem-Noether Theorem 111
- 8 Double Centralizer Theorem 114
- 9 Wedderburn's Theorem about Finite Division Rings 117
- 10 Frobenius's Theorem about Division Algebras over the Reals 118
- 11 Problems 120
- III Brauer Group 123
- 1 Definition and Examples, Relative Brauer Group 124
- 2 Factor Sets 132
- 3 Crossed Products 135
- 4 Hilbert's Theorem 90 145
- 5 Digression on Cohomology of Groups 147
- 6 Relative Brauer Group when the Galois Group Is Cyclic 158
- 7 Problems 162
- IV Homological Algebra 166
- 2 Complexes and Additive Functors 171
- 3 Long Exact Sequences 184
- 4 Projectives and Injectives 192
- 5 Derived Functors 202
- 6 Long Exact Sequences of Derived Functors 210
- 7 Ext and Tor 223
- 8 Abelian Categories 232
- 9 Problems 250
- V Three Theorems in Algebraic Number Theory 262
- 1 Setting 262
- 2 Discriminant 266
- 3 Dedekind Discriminant Theorem 274
- 4 Cubic Number Fields as Examples 279
- 5 Dirichlet Unit Theorem 288
- 6 Finiteness of the Class Number 298
- 7 Problems 307
- VI Reinterpretation with Adeles and Ideles 313
- 1 p-adic Numbers 314
- 2 Discrete Valuations 320
- 3 Absolute Values 331
- 4 Completions 342
- 5 Hensel's Lemma 349
- 6 Ramification Indices and Residue Class Degrees 353
- 7 Special Features of Galois Extensions 368
- 8 Different and Discriminant 371
- 9 Global and Local Fields 382
- 10 Adeles and Ideles 388
- 11 Problems 397
- VII Infinite Field Extensions 403
- 1 Nullstellensatz 404
- 2 Transcendence Degree 408
- 3 Separable and Purely Inseparable Extensions 414
- 4 Krull Dimension 423
- 5 Nonsingular and Singular Points 428
- 6 Infinite Galois Groups 434
- 7 Problems 445
- VIII Background for Algebraic Geometry 447
- 1 Historical Origins and Overview 448
- 2 Resultant and Bezout's Theorem 451
- 3 Projective Plane Curves 456
- 4 Intersection Multiplicity for a Line with a Curve 466
- 5 Intersection Multiplicity for Two Curves 473
- 6 General Form of Bezout's Theorem for Plane Curves 488
- 7 Grobner Bases 491
- 8 Constructive Existence 499
- 9 Uniqueness of Reduced Grobner Bases 508
- 10 Simultaneous Systems of Polynomial Equations 510
- 11 Problems 516
- IX The Number Theory of Algebraic Curves 520
- 1 Historical Origins and Overview 520
- 2 Divisors 531
- 3 Genus 534
- 4 Riemann-Roch Theorem 540
- 5 Applications of the Riemann-Roch Theorem 552
- 6 Problems 554
- X Methods of Algebraic Geometry 558
- 1 Affine Algebraic Sets and Affine Varieties 559
- 2 Geometric Dimension 563
- 3 Projective Algebraic Sets and Projective Varieties 570
- 4 Rational Functions and Regular Functions 579
- 5 Morphisms 590
- 6 Rational Maps 595
- 7 Zariski's Theorem about Nonsingular Points 600
- 8 Classification Questions about Irreducible Curves 604
- 9 Affine Algebraic Sets for Monomial Ideals 618
- 10 Hilbert Polynomial in the Affine Case 626
- 11 Hilbert Polynomial in the Projective Case 633
- 12 Intersections in Projective Space 635
- 13 Schemes 638
- 14 Problems 644
- Hints for Solutions of Problems 649.