|
|
|
|
LEADER |
00000cam a22000007a 4500 |
001 |
17400478 |
003 |
UV# |
005 |
20220929120405.0 |
008 |
120725s2013 nyua b 001 0 eng d |
999 |
|
|
|c 349832
|d 349831
|
010 |
|
|
|a 2012945172
|
020 |
|
|
|a 9781441999818
|q (pasta dura)
|
020 |
|
|
|a 1441999817
|q (pasta dura)
|
040 |
|
|
|a UKMGB
|b spa
|e rda
|c UKMGB
|d UV#
|
050 |
|
4 |
|a QA613
|b L43 2013
|
082 |
0 |
4 |
|a 514.34
|
100 |
1 |
|
|a Lee, John M.,
|d 1950-
|9 399727
|e autor
|
245 |
1 |
0 |
|a Introduction to smooth manifolds /
|c John M. Lee.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a New York :
|b Springer,
|c 2013.
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a xv, 708 páginas :
|b ilustraciones ;
|c 24 cm.
|
336 |
|
|
|a texto
|2 rdacontent
|
337 |
|
|
|a sin mediación
|2 rdamedia
|
338 |
|
|
|a volumen
|2 rdacarrier
|
490 |
0 |
|
|a Graduate Texts in Mathematics ;
|v 218
|
504 |
|
|
|a Incluye bibliografía (páginas 675-677) e índices.
|
505 |
0 |
|
|a 1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.
|
650 |
|
7 |
|a Variedades (Matemáticas)
|9 356703
|
942 |
|
|
|2 lcc
|c LIBRO
|