Cargando…

Beam Shape and Halo Monitor Study

The Beam Shape and Halo Monitor, designed by Masaki Hori, is the main diagnostic tool for the 3 MeV test stand scheduled in 2008. This detector will be able to measure the transverse halo generated in the RFQ and the Chopper-line and to detect and measure the longitudinal halo composed of the incomp...

Descripción completa

Detalles Bibliográficos
Autores principales: Lallement, J B, Sargsyan, E Z, Hori, M
Lenguaje:eng
Publicado: 2007
Materias:
Acceso en línea:http://cds.cern.ch/record/1001235
Descripción
Sumario:The Beam Shape and Halo Monitor, designed by Masaki Hori, is the main diagnostic tool for the 3 MeV test stand scheduled in 2008. This detector will be able to measure the transverse halo generated in the RFQ and the Chopper-line and to detect and measure the longitudinal halo composed of the incompletely chopped bunches. Its principle of functioning is the following: H- ions hit a carbon foil and generate secondary electrons with the same spatial distribution than the incoming beam and a current depending on an emission coefficient given by the carbon foil. These electrons are accelerated towards a phosphor screen by an electric field applied between accelerating grids. Once the electrons reach the phosphor screen, they generate light which is transmitted to a CCD camera via optic fibers [1]. It is expected to give a time resolution of 1-2ns and a spatial resolution of 1mm. The first test of the BSHM done with a Laser has shown a spatial resolution bigger than 1cm and the time resolution bigger than 2ns[2]. The purpose of this study is to understand what are the processes which deteriorate the resolution and to show the benefits brought by adding a pre-accelerating grid in the detector.