Cargando…
Homogeneous Lorentzian spaces whose null-geodesics are canonically homogeneous
It is shown that a homogeneous Lorentzian space for which every null- geodesic is canonically homogeneous, admits a non-vanishing homogeneous Lorentzian structure belonging to the class T/sub 1 /circled +T/sub 3/.
Autor principal: | Meessen, P |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s11005-006-0060-z http://cds.cern.ch/record/1005169 |
Ejemplares similares
-
On homogeneous Lorentzian spaces whose null geodesics are homogeneous
por: Meessen, P
Publicado: (2005) -
Lorentzian homogeneous spaces admitting a homogeneous structure of type $T1+T3$
por: Meessen, P
Publicado: (2005) -
Homogeneous Lorentzian spaces admitting a homogeneous structure of type $\tau_{1} + \tau_3$
por: Meessen, P
Publicado: (2005) -
Strictly pseudoconvex spin manifolds, Fefferman spaces and Lorentzian twistor spinors
por: Baum, H
Publicado: (1997) -
Twistor and Killing spinors in Lorentzian geometry
por: Baum, H
Publicado: (2000)