Cargando…
High-accuracy scaling exponents in the local potential approximation
We test equivalences between different realisations of Wilson's renormalisation group by computing the leading, subleading, and anti-symmetric corrections-to-scaling exponents, and the full fixed point potential for the Ising universality class to leading order in a derivative expansion. We dis...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysb.2007.03.036 http://cds.cern.ch/record/1011082 |
Sumario: | We test equivalences between different realisations of Wilson's renormalisation group by computing the leading, subleading, and anti-symmetric corrections-to-scaling exponents, and the full fixed point potential for the Ising universality class to leading order in a derivative expansion. We discuss our methods with a special emphasis on accuracy and reliability. We establish numerical equivalence of Wilson-Polchinski flows and optimised renormalisation group flows with an unprecedented accuracy in the scaling exponents. Our results are contrasted with high-accuracy findings from Dyson's hierarchical model, where a tiny but systematic difference in all scaling exponents is established. Further applications for our numerical methods are briefly indicated. |
---|