Cargando…
Adaptive Vertex Fitting
Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors. A robust, adaptive method is presented that is able to cope with contaminated data. The method is formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima i...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1027031 |
Sumario: | Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors. A robust, adaptive method is presented that is able to cope with contaminated data. The method is formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima in the optimization. For the initialization of the adaptive filter a robust algorithm is presented that turns out to perform well in a wide range of applications. The tuning of the annealing schedule and of the cut-off parameter is described, using simulated data from the CMS experiment. Finally, the adaptive property of the method is illustrated in two examples. |
---|