Cargando…
Probing Newton's constant on vast scales: Dvali-Gabadadze-Porrati gravity, cosmic acceleration, and large scale structure
The nature of the fuel that drives today's cosmic acceleration is an open and tantalizing mystery. The brane-world theory of Dvali, Gabadadze, and Porrati (DGP) provides a context where late-time acceleration is driven not by some energy-momentum component (dark energy), but rather is the manif...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1037639 |
Sumario: | The nature of the fuel that drives today's cosmic acceleration is an open and tantalizing mystery. The brane-world theory of Dvali, Gabadadze, and Porrati (DGP) provides a context where late-time acceleration is driven not by some energy-momentum component (dark energy), but rather is the manifestation of the excruciatingly slow leakage of gravity off our four-dimensional world into an extra dimension. At the same time, DGP gravity alters the gravitational force law in a specific and dramatic way at cosmologically accessible scales. We derive the DGP gravitational force law in a cosmological setting for spherical perturbations at subhorizon scales and compute the growth of large-scale structures. We find that a residual repulsive force at large distances gives rise to a suppression of the growth of density and velocity perturbations. Explaining the cosmic acceleration in this framework leads to a present day fluctuation power spectrum normalization sigma8<=0.8 at about the two-sigma level, in contrast with observations. We discuss further theoretical work necessary to go beyond our approximations to confirm these results. |
---|