Cargando…
Concerning the $\nu/N \to {1/3}$ resonance, I : application of a variational procedure and of the Moser method to the equation $\frac {d^{2}v}{dt^{2}}+ {(\frac {2\nu}{N})}^{2}v + \frac{1}{2} (\sin2t) v^{2}=0$
Autor principal: | Laslett, L J |
---|---|
Lenguaje: | eng |
Publicado: |
1959
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1043682 |
Ejemplares similares
-
Concerning the $\nu/N \to {1/3}$ resonance, III : use of the Moser method to estimate the rotation number, as a function of amplitude, for the equation $\frac {d^{2}v}{dt^{2}}+ {(\frac {2\nu}{N})}^{2}v + \frac{1}{2} (\sin2t) v^{2}=0$
por: Laslett, L J
Publicado: (1959) -
Concerning the $\nu/N \to {1/3}$ resonance, II : application of a variational procedure and of the Moser method to the equation $\frac{d^{2}v}{dt^{2}}+ {(\frac{2\nu}{N})^2 v + {\frac{1}{2}}[{\sum_{m=1}{b_m}} \sin2mt] v^2=0}$
por: Laslett, L J
Publicado: (1959) -
Concerning the $\nu/N \to {1/3}$ resonance, V : analysis of the equation $\frac {d^{2}v}{{ds}^{2}}+ {(\frac {2\nu}{N})^2 v} - {(\cos2s)}v^{2} - {\lambda}{(\cos {\frac {2s}{3})}}=0$
por: Laslett, L J, et al.
Publicado: (1959) -
Concerning the $\nu/N \to {1/3}$ resonance, IV : the limiting-amplitude solution of the equation $\frac {d^{2}u}{d\phi^{2}} + {(a+b\cos2\phi)u} + {\frac{B_{1}}{2}}{(\sin2\phi)}u^2=0$
por: Laslett, L J
Publicado: (1959) -
Concerning the $\nu/N \to {1/3}$ resonance, IV : a trial function for the limiting-amplitude solution of $\frac {d^{2}u}{d\phi^{2}} + {(a+b\cos2\phi)u} + {\frac{B_{1}}{2}}{(\sin2\phi)}u^2=0$
por: Laslett, L J
Publicado: (1959)