Cargando…
Hurwitz numbers, matrix models and enumerative geometry
We propose a new, conjectural recursion solution for Hurwitz numbers at all genera. This conjecture is based on recent progress in solving type B topological string theory on the mirrors of toric Calabi-Yau manifolds, which we briefly review to provide some background for our conjecture. We show in...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1090/pspum/078/2483754 http://cds.cern.ch/record/1056100 |
Sumario: | We propose a new, conjectural recursion solution for Hurwitz numbers at all genera. This conjecture is based on recent progress in solving type B topological string theory on the mirrors of toric Calabi-Yau manifolds, which we briefly review to provide some background for our conjecture. We show in particular how this B-model solution, combined with mirror symmetry for the one-leg, framed topological vertex, leads to a recursion relation for Hodge integrals with three Hodge class insertions. Our conjecture in Hurwitz theory follows from this recursion for the framed vertex in the limit of infinite framing. |
---|