Cargando…

Towards an S-matrix Description of Gravitational Collapse

Extending our previous results on trans-Planckian ($Gs \gg \hbar$) scattering of light particles in quantum string-gravity we present a calculation of the corresponding S-matrix from the region of large impact parameters ($b \gg G\sqrt{s}>\lambda_s$) down to the regime where classical gravitation...

Descripción completa

Detalles Bibliográficos
Autores principales: Amati, D., Ciafaloni, M., Veneziano, G.
Lenguaje:eng
Publicado: 2007
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2008/02/049
http://cds.cern.ch/record/1074089
Descripción
Sumario:Extending our previous results on trans-Planckian ($Gs \gg \hbar$) scattering of light particles in quantum string-gravity we present a calculation of the corresponding S-matrix from the region of large impact parameters ($b \gg G\sqrt{s}>\lambda_s$) down to the regime where classical gravitational collapse is expected to occur. By solving the semiclassical equations of a previously introduced effective-action approximation, we find that the perturbative expansion around the leading eikonal result diverges at a critical value $b = b_c = O(G\sqrt{s})$, signalling the onset of a new (black-hole related?) regime. We then discuss the main features of our explicitly unitary S-matrix -- and of the associated effective metric -- down to (and in the vicinity of) $b = b_c$, and present some ideas and results on its extension all the way to the $ b \to 0$ region. We find that for $b<b_c$ the physical field solutions are complex-valued and the S-matrix shows additional absorption, related to a new production mechanism. The field solutions themselves are, surprisingly, everywhere regular, suggesting a quantum-tunneling -- rather than a singular-geometry -- situation.