Cargando…

Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$

A linear CKM relation, $\bar\eta= \tan\Phi_{3/2}(\bar\rho-0.24\pm 0.03)$, involving a $1\sigma$ range for $\Phi_{3/2}$, $20^\circ < \Phi_{3/2} < 115^\circ$, is obtained from $B^0\to K^*\pi$ amplitudes measured recently in Dalitz plot analyses of $B^0\to K^+\pi^-\pi^0$ and $B^0(t)\to K_S\pi^+\p...

Descripción completa

Detalles Bibliográficos
Autores principales: Gronau, Michael, Pirjol, Dan, Soni, Amarjit, Zupan, Jure
Lenguaje:eng
Publicado: 2007
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.77.057504
http://cds.cern.ch/record/1077188
_version_ 1780913475520823296
author Gronau, Michael
Pirjol, Dan
Soni, Amarjit
Zupan, Jure
author_facet Gronau, Michael
Pirjol, Dan
Soni, Amarjit
Zupan, Jure
author_sort Gronau, Michael
collection CERN
description A linear CKM relation, $\bar\eta= \tan\Phi_{3/2}(\bar\rho-0.24\pm 0.03)$, involving a $1\sigma$ range for $\Phi_{3/2}$, $20^\circ < \Phi_{3/2} < 115^\circ$, is obtained from $B^0\to K^*\pi$ amplitudes measured recently in Dalitz plot analyses of $B^0\to K^+\pi^-\pi^0$ and $B^0(t)\to K_S\pi^+\pi^-$. This relation is consistent within the large error on $\Phi_{3/2}$ with other CKM constraints which are unaffected by new $b\to s\bar q q$ operators. Sensitivity of the method to a new physics contribution in the $\Delta S=\Delta I=1$ amplitude is discussed.
id cern-1077188
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2007
record_format invenio
spelling cern-10771882023-07-27T04:05:06Zdoi:10.1103/PhysRevD.77.057504http://cds.cern.ch/record/1077188engGronau, MichaelPirjol, DanSoni, AmarjitZupan, JureConstraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$Particle Physics - PhenomenologyA linear CKM relation, $\bar\eta= \tan\Phi_{3/2}(\bar\rho-0.24\pm 0.03)$, involving a $1\sigma$ range for $\Phi_{3/2}$, $20^\circ < \Phi_{3/2} < 115^\circ$, is obtained from $B^0\to K^*\pi$ amplitudes measured recently in Dalitz plot analyses of $B^0\to K^+\pi^-\pi^0$ and $B^0(t)\to K_S\pi^+\pi^-$. This relation is consistent within the large error on $\Phi_{3/2}$ with other CKM constraints which are unaffected by new $b\to s\bar q q$ operators. Sensitivity of the method to a new physics contribution in the $\Delta S=\Delta I=1$ amplitude is discussed.A linear CKM relation, $\bar\eta= \tan\Phi_{3/2}(\bar\rho-0.24\pm 0.03)$, involving a $1\sigma$ range for $\Phi_{3/2}$, $20^\circ < \Phi_{3/2} < 115^\circ$, is obtained from $B^0\to K^*\pi$ amplitudes measured recently in Dalitz plot analyses of $B^0\to K^+\pi^-\pi^0$ and $B^0(t)\to K_S\pi^+\pi^-$. This relation is consistent within the large error on $\Phi_{3/2}$ with other CKM constraints which are unaffected by new $b\to s\bar q q$ operators. Sensitivity of the method to a new physics contribution in the $\Delta S=\Delta I=1$ amplitude is discussed.arXiv:0712.3751SLAC-PUB-13022CERN-PH-TH-2007-228BNL-HET-07-21CERN-PH-TH-2007-228SLAC-PUB-13022BNL-HET-07-21oai:cds.cern.ch:10771882007-12-24
spellingShingle Particle Physics - Phenomenology
Gronau, Michael
Pirjol, Dan
Soni, Amarjit
Zupan, Jure
Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$
title Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$
title_full Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$
title_fullStr Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$
title_full_unstemmed Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$
title_short Constraint on $\overline{\rho}$, $\overline{\eta}$ from B $\to K*\pi$
title_sort constraint on $\overline{\rho}$, $\overline{\eta}$ from b $\to k*\pi$
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.77.057504
http://cds.cern.ch/record/1077188
work_keys_str_mv AT gronaumichael constraintonoverlinerhooverlineetafrombtokpi
AT pirjoldan constraintonoverlinerhooverlineetafrombtokpi
AT soniamarjit constraintonoverlinerhooverlineetafrombtokpi
AT zupanjure constraintonoverlinerhooverlineetafrombtokpi