Cargando…

Characterization of a nondestructive beam profile monitor using luminescent emission

The LHC (large hadron collider) [LHC study group: LHC. The large hadron collider conceptual design; CERN/AC/95-05] is the future p-p collider under construction at CERN, Geneva. Over a circumference of 26.7 km a set of cryogenic dipoles and rf cavities will store and accelerate proton and ion beams...

Descripción completa

Detalles Bibliográficos
Autores principales: Variola, A, Jung, R, Ferioli, G
Lenguaje:eng
Publicado: 2007
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevSTAB.10.122801
http://cds.cern.ch/record/1087440
_version_ 1780913685695299584
author Variola, A
Jung, R
Ferioli, G
author_facet Variola, A
Jung, R
Ferioli, G
author_sort Variola, A
collection CERN
description The LHC (large hadron collider) [LHC study group: LHC. The large hadron collider conceptual design; CERN/AC/95-05] is the future p-p collider under construction at CERN, Geneva. Over a circumference of 26.7 km a set of cryogenic dipoles and rf cavities will store and accelerate proton and ion beams up to energies of the order of 7 TeV. Injection in LHC will be performed by the CERN complex of accelerators, starting from the source and passing through the linac, the four booster rings, the proton synchrotron (PS), and super proton synchrotron (SPS) accelerators. One of the main constraints on LHC performance is emittance preservation along the whole chain of CERN accelerators. The accepted relative normalized emittance blowup after filamentation is ±7%. To monitor the beam and the emittance blowup process, a study of different prototypes of nonintercepting beam profile monitors has been performed. In this context a monitor using the luminescent emission of gases excited by ultrarelativistic protons (450 GeV) was developed and tested in the SPS ring. The results of beam size measurements and their evolution as a function of the machine parameters are presented. The image quality and resolution attainable in the LHC case have been assessed. A first full characterization of the luminescence cross section, spectrum, decay time, and afterglow effect for an ultrarelativistic proton beam is provided. Some significant results are also provided for lead ion beams.
id cern-1087440
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2007
record_format invenio
spelling cern-10874402019-09-30T06:29:59Zdoi:10.1103/PhysRevSTAB.10.122801http://cds.cern.ch/record/1087440engVariola, AJung, RFerioli, GCharacterization of a nondestructive beam profile monitor using luminescent emissionAccelerators and Storage RingsThe LHC (large hadron collider) [LHC study group: LHC. The large hadron collider conceptual design; CERN/AC/95-05] is the future p-p collider under construction at CERN, Geneva. Over a circumference of 26.7 km a set of cryogenic dipoles and rf cavities will store and accelerate proton and ion beams up to energies of the order of 7 TeV. Injection in LHC will be performed by the CERN complex of accelerators, starting from the source and passing through the linac, the four booster rings, the proton synchrotron (PS), and super proton synchrotron (SPS) accelerators. One of the main constraints on LHC performance is emittance preservation along the whole chain of CERN accelerators. The accepted relative normalized emittance blowup after filamentation is ±7%. To monitor the beam and the emittance blowup process, a study of different prototypes of nonintercepting beam profile monitors has been performed. In this context a monitor using the luminescent emission of gases excited by ultrarelativistic protons (450 GeV) was developed and tested in the SPS ring. The results of beam size measurements and their evolution as a function of the machine parameters are presented. The image quality and resolution attainable in the LHC case have been assessed. A first full characterization of the luminescence cross section, spectrum, decay time, and afterglow effect for an ultrarelativistic proton beam is provided. Some significant results are also provided for lead ion beams.oai:cds.cern.ch:10874402007
spellingShingle Accelerators and Storage Rings
Variola, A
Jung, R
Ferioli, G
Characterization of a nondestructive beam profile monitor using luminescent emission
title Characterization of a nondestructive beam profile monitor using luminescent emission
title_full Characterization of a nondestructive beam profile monitor using luminescent emission
title_fullStr Characterization of a nondestructive beam profile monitor using luminescent emission
title_full_unstemmed Characterization of a nondestructive beam profile monitor using luminescent emission
title_short Characterization of a nondestructive beam profile monitor using luminescent emission
title_sort characterization of a nondestructive beam profile monitor using luminescent emission
topic Accelerators and Storage Rings
url https://dx.doi.org/10.1103/PhysRevSTAB.10.122801
http://cds.cern.ch/record/1087440
work_keys_str_mv AT variolaa characterizationofanondestructivebeamprofilemonitorusingluminescentemission
AT jungr characterizationofanondestructivebeamprofilemonitorusingluminescentemission
AT feriolig characterizationofanondestructivebeamprofilemonitorusingluminescentemission