Cargando…
Scalar field and QCD constraints in Nuclear Physics
Relativistic theories of nuclear matter are discussed in a new pespective. First the chiral character of the scalar nuclear field is introduced in the framework of the linear sigma model. With the assumption that the nucleon mass originates in part from the coupling to the quark condensate it is pos...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.2973488 http://cds.cern.ch/record/1098846 |
Sumario: | Relativistic theories of nuclear matter are discussed in a new pespective. First the chiral character of the scalar nuclear field is introduced in the framework of the linear sigma model. With the assumption that the nucleon mass originates in part from the coupling to the quark condensate it is possible to relate the optical potential for the propagation of the scalar field to the QCD scalar susceptibility of the nucleon, on which indications exist from the lattice evolution of the nucleon mass with the quark mass. Constraining the parameters of the nuclear scalar potential by the lattice expansion parameters a successful description of the nuclear saturation properties can be reached. |
---|