Cargando…

Mesures de taux de production d'éléments gazeux et volatiles lors de réactions induites par des protons de 1 et 1,4 GeV sur des cibles épaisses de plomb-bismuth liquides

The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6th Euratom Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will...

Descripción completa

Detalles Bibliográficos
Autor principal: Tall, Yoro
Lenguaje:fre
Publicado: Nantes U. 2008
Materias:
Acceso en línea:http://cds.cern.ch/record/1119921
Descripción
Sumario:The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6th Euratom Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target which one molten lead-bismuth concept is studied by the SUBATECH (physique SUBAtomique et des TECHnologies associées) laboratory in Nantes. The irradiation of molten lead-bismuth target with energetic proton beam generates volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Européen de la Recherche Nucléaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt