Cargando…
RF Wire Compensator of Long-Range Beam-Beam Effects
The dynamic aperture of the proton beam circulating in the Large Hadron Collider (LHC) is expected to be limited by up to 120 long-range beam-beam encounters. In order to perfectly compensate the LHC long-range beambeam effect for nominal as well as for so-called "PACMAN" bunches, i.e. bun...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1122249 |
Sumario: | The dynamic aperture of the proton beam circulating in the Large Hadron Collider (LHC) is expected to be limited by up to 120 long-range beam-beam encounters. In order to perfectly compensate the LHC long-range beambeam effect for nominal as well as for so-called "PACMAN" bunches, i.e. bunches at the start or end of a bunch train, the strength of a wire compensator should be adjusted for each bunch individually. Here an RF-based compensator is proposed as a practical solution for the PACMAN compensation. We show that this approach also allows relaxing the power and precision requirements compared with those of a pulsed DC device, to a level within the state-of-the-art of RF technology. Furthermore it permits the use of a passive circulator in the tunnel close to the beam and thus a significant reduction of the transmission line length and of the associated multiple reflections. Simulations of dynamic aperture and emittance growth, issues related to RF phase noise, and first experimental results from laboratory models are presented. |
---|