Cargando…

The Baryogenesis Window in the MSSM

Electroweak baryogenesis provides an attractive explanation of the origin of the matter-antimatter asymmetry that relies on physics at the weak scale and thus it is testable at present and near future high-energy physics experiments. Although this scenario may not be realized within the Standard Mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Carena, M., Nardini, Germano, Quiros, M., Wagner, C.E.M.
Lenguaje:eng
Publicado: 2008
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.nuclphysb.2008.12.014
http://cds.cern.ch/record/1128398
Descripción
Sumario:Electroweak baryogenesis provides an attractive explanation of the origin of the matter-antimatter asymmetry that relies on physics at the weak scale and thus it is testable at present and near future high-energy physics experiments. Although this scenario may not be realized within the Standard Model, it can be accommodated within the MSSM provided there are new CP-violating phases and the lightest stop mass is smaller than the top-quark mass. In this work we provide an evaluation of the values of the stop (m_{\tilde t}) and Higgs (m_H) masses consistent with the requirements of electroweak baryogenesis based on an analysis that makes use of the renormalization group improved Higgs and stop potentials, and including the dominant two-loop effects at high temperature. We find an allowed window in the (m_{\tilde t},m_H)-plane, consistent with all present experimental data, where there is a strongly first-order electroweak phase transition and where the electroweak vacuum is metastable but sufficiently long-lived. In particular we obtain absolute upper bounds on the Higgs and stop masses, m_H\lesssim 125 GeV and m_{\tilde t}\lesssim 125 GeV, implying that this scenario will be probed at the LHC.