Cargando…

Performance of Superconducting Cavities as Required for the SPL

This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a phenomenological assessment of the field dependent Q-value, as taken from published test re...

Descripción completa

Detalles Bibliográficos
Autor principal: Weingarten, Wolfgang
Lenguaje:eng
Publicado: 2008
Materias:
Acceso en línea:http://cds.cern.ch/record/1132351
Descripción
Sumario:This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a phenomenological assessment of the field dependent Q-value, as taken from published test results from RF cavities of various proveniences. It turns out that the design Q-value at an accelerating gradient of 25 MV/m ($\Beta$ = 1 cavity) of $1^{.}10^{10}$ at 704 (1408) MHz is attainable at 1.9 (1.6) K, respectively, however, with the present state-of-the-art manufacturing, at the expense of some reprocessing. The optimum of the total electrical grid power consumption (composed of RF and cryogenics) is estimated as a function of frequency and operating temperature for both the low and high power SPL. This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a phenomenological assessment of the field dependent Q-value, as taken from published test results from RF cavities of various proveniences. It turns out that the design Q-value at an accelerating gradient of 25 MV/m ($\beta$ = 1 cavity) of $1^{.}10^{10}$ at 704 (1408) MHz is attainable at 1.9 (1.6) K, respectively, however, with the present state-of-the-art manufacturing, at the expense of some reprocessing. The optimum of the total electrical grid power consumption (composed of RF and cryogenics) is estimated as a function of frequency and operating temperature for both the low and high power SPL.