Cargando…

Emergent Electroweak Gravity

We show that any massive cosmological relic particle with small self-interactions is a super-fluid today, due to the broadening of its wave packet, and lack of any elastic scattering. The WIMP dark matter picture is only consistent its mass $M \gg M_{\rm Pl}$ in order to maintain classicality. The d...

Descripción completa

Detalles Bibliográficos
Autor principal: McElrath, Bob
Lenguaje:eng
Publicado: 2008
Materias:
Acceso en línea:http://cds.cern.ch/record/1151566
_version_ 1780915673221824512
author McElrath, Bob
author_facet McElrath, Bob
author_sort McElrath, Bob
collection CERN
description We show that any massive cosmological relic particle with small self-interactions is a super-fluid today, due to the broadening of its wave packet, and lack of any elastic scattering. The WIMP dark matter picture is only consistent its mass $M \gg M_{\rm Pl}$ in order to maintain classicality. The dynamics of a super-fluid are given by the excitation spectrum of bound state quasi-particles, rather than the center of mass motion of constituent particles. If this relic is a fermion with a repulsive interaction mediated by a heavy boson, such as neutrinos interacting via the $Z^0$, the condensate has the same quantum numbers as the vierbein of General Relativity. Because there exists an enhanced global symmetry $SO(3,1)_{space}\times SO(3,1)_{spin}$ among the fermion's self-interactions broken only by it's kinetic term, the long wavelength fluctuation around this condensate is a Goldstone graviton. A gravitational theory exists in the low energy limit of the Standard Model's Electroweak sector below the weak scale, with a strength that is parametrically similar to $G_N$.
id cern-1151566
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2008
record_format invenio
spelling cern-11515662019-09-30T06:29:59Zhttp://cds.cern.ch/record/1151566engMcElrath, BobEmergent Electroweak Gravitygr-qcWe show that any massive cosmological relic particle with small self-interactions is a super-fluid today, due to the broadening of its wave packet, and lack of any elastic scattering. The WIMP dark matter picture is only consistent its mass $M \gg M_{\rm Pl}$ in order to maintain classicality. The dynamics of a super-fluid are given by the excitation spectrum of bound state quasi-particles, rather than the center of mass motion of constituent particles. If this relic is a fermion with a repulsive interaction mediated by a heavy boson, such as neutrinos interacting via the $Z^0$, the condensate has the same quantum numbers as the vierbein of General Relativity. Because there exists an enhanced global symmetry $SO(3,1)_{space}\times SO(3,1)_{spin}$ among the fermion's self-interactions broken only by it's kinetic term, the long wavelength fluctuation around this condensate is a Goldstone graviton. A gravitational theory exists in the low energy limit of the Standard Model's Electroweak sector below the weak scale, with a strength that is parametrically similar to $G_N$.arXiv:0812.2696oai:cds.cern.ch:11515662008-12-16
spellingShingle gr-qc
McElrath, Bob
Emergent Electroweak Gravity
title Emergent Electroweak Gravity
title_full Emergent Electroweak Gravity
title_fullStr Emergent Electroweak Gravity
title_full_unstemmed Emergent Electroweak Gravity
title_short Emergent Electroweak Gravity
title_sort emergent electroweak gravity
topic gr-qc
url http://cds.cern.ch/record/1151566
work_keys_str_mv AT mcelrathbob emergentelectroweakgravity