Cargando…

Design and Radiation Assessment of Optoelectronic Transceiver Circuits for ITER

The presented work describes the design and characterization results of different electronic building blocks for a MGy gamma radiation tolerant optoelectronic transceiver aiming at ITER applications. The circuits are implemented using the 70GHz fT SiGe HBT in a 0.35μm BiCMOS technology. A VCSEL driv...

Descripción completa

Detalles Bibliográficos
Autores principales: Leroux, P, De Cock, W, Van Uffelen, M, Steyaert, M
Lenguaje:eng
Publicado: CERN 2008
Materias:
Acceso en línea:https://dx.doi.org/10.5170/CERN-2008-008.167
http://cds.cern.ch/record/1158536
Descripción
Sumario:The presented work describes the design and characterization results of different electronic building blocks for a MGy gamma radiation tolerant optoelectronic transceiver aiming at ITER applications. The circuits are implemented using the 70GHz fT SiGe HBT in a 0.35μm BiCMOS technology. A VCSEL driver circuit has been designed and measured up to a TID of 1.6 MGy and up to a bit rate of 622Mbps. No significant degradation is seen in the eye opening of the output signal. On the receiver side, both a 1GHz, 3kΩ transimpedance and a 5GHz Cherry-Hooper amplifier with over 20dB voltage gain have been designed.