Cargando…
On the generalized eigenvalue method for energies and matrix elements in lattice field theory
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a part...
Autores principales: | Blossier, Benoit, Della Morte, Michele, von Hippel, Georg, Mendes, Tereza, Sommer, Rainer |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2009/04/094 http://cds.cern.ch/record/1160690 |
Ejemplares similares
-
Efficient use of the Generalized Eigenvalue Problem
por: Blossier, B., et al.
Publicado: (2008) -
B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD
por: Bernardoni, Fabio, et al.
Publicado: (2012) -
A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice
por: Della Morte, Michele, et al.
Publicado: (2010) -
$M_b$ and $f_B$ from non-perturbatively renormalized HQET with $N_f$=2 light quarks
por: Blossier, Benoit, et al.
Publicado: (2011) -
B-physics from HQET in two-flavour lattice QCD
por: Bernardoni, F., et al.
Publicado: (2012)