Cargando…

Energy Deposition in the LHC Insertion Regions IR1 and IR5

Proton-proton collision debris coming out from the Interaction Point (IP) impacts the superconducting magnets of the insertion region and induces energy deposition in the coils. This is a critical aspect to evaluate regarding quench limit in the superconducting magnets. The study presents an estimat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoa, C, Cerutti, F, Wildner, E
Lenguaje:eng
Publicado: 2008
Materias:
Acceso en línea:http://cds.cern.ch/record/1162841
Descripción
Sumario:Proton-proton collision debris coming out from the Interaction Point (IP) impacts the superconducting magnets of the insertion region and induces energy deposition in the coils. This is a critical aspect to evaluate regarding quench limit in the superconducting magnets. The study presents an estimation of the energy deposition in the insertion regions IR1 (ATLAS) and IR5 (CMS) for version 6.5 of the LHC layout, with a baseline nominal luminosity of L=1034 s-1 cm-2 for proton-proton collisions at 14 TeV center of mass energy. All essential components in the insertion regions up to 60 m from the interaction point have been implemented with a detailed description of their geometry, material and magnetic field. Total heat loads and power density distributions are evaluated in the components of the inner triplet, including also the TAS absorbers and the corrector magnets. The results are obtained using FLUKA, a Monte Carlo code modelling particle interaction and transport [1-2].