Cargando…

Non-perturbative effects and wall-crossing from topological strings

We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Collinucci, Andres, Soler, Pablo, Uranga, Angel M.
Lenguaje:eng
Publicado: 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2009/11/025
http://cds.cern.ch/record/1171402
_version_ 1780916150470705152
author Collinucci, Andres
Soler, Pablo
Uranga, Angel M.
author_facet Collinucci, Andres
Soler, Pablo
Uranga, Angel M.
author_sort Collinucci, Andres
collection CERN
description We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d N=2 IIB models. By introducing fluxes and/or orientifolds and/or D-branes, we describe the reduction to 4d N=1 models, and describe the computation of non-perturbative superpotential contributions from resummed brane instantons. We argue that the connection between non-perturbative effects and the topological string underlies the continuity and holomorphy of non-perturbative effects across lines of BPS stability. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, suggesting a realization of the Kontsevich-Soibelmann wall-crossing formula.
id cern-1171402
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
record_format invenio
spelling cern-11714022023-03-12T04:54:30Zdoi:10.1088/1126-6708/2009/11/025http://cds.cern.ch/record/1171402engCollinucci, AndresSoler, PabloUranga, Angel M.Non-perturbative effects and wall-crossing from topological stringsParticle Physics - TheoryWe argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d N=2 IIB models. By introducing fluxes and/or orientifolds and/or D-branes, we describe the reduction to 4d N=1 models, and describe the computation of non-perturbative superpotential contributions from resummed brane instantons. We argue that the connection between non-perturbative effects and the topological string underlies the continuity and holomorphy of non-perturbative effects across lines of BPS stability. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, suggesting a realization of the Kontsevich-Soibelmann wall-crossing formula.We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d N=2 IIB models. By introducing fluxes and/or orientifolds and/or D-branes, we describe the reduction to 4d N=1 models, and describe the computation of non-perturbative superpotential contributions from resummed brane instantons. We argue that the connection between non-perturbative effects and the topological string underlies the continuity and holomorphy of non-perturbative effects across lines of BPS stability. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, suggesting a realization of the Kontsevich-Soibelmann wall-crossing formula.arXiv:0904.1133IFT-UAM-CSIC-09-21CERN-PH-TH-2009-045IFT-UAM-CSIC-09-21CERN-PH-TH-2009-045oai:cds.cern.ch:11714022009-04-08
spellingShingle Particle Physics - Theory
Collinucci, Andres
Soler, Pablo
Uranga, Angel M.
Non-perturbative effects and wall-crossing from topological strings
title Non-perturbative effects and wall-crossing from topological strings
title_full Non-perturbative effects and wall-crossing from topological strings
title_fullStr Non-perturbative effects and wall-crossing from topological strings
title_full_unstemmed Non-perturbative effects and wall-crossing from topological strings
title_short Non-perturbative effects and wall-crossing from topological strings
title_sort non-perturbative effects and wall-crossing from topological strings
topic Particle Physics - Theory
url https://dx.doi.org/10.1088/1126-6708/2009/11/025
http://cds.cern.ch/record/1171402
work_keys_str_mv AT collinucciandres nonperturbativeeffectsandwallcrossingfromtopologicalstrings
AT solerpablo nonperturbativeeffectsandwallcrossingfromtopologicalstrings
AT urangaangelm nonperturbativeeffectsandwallcrossingfromtopologicalstrings