Cargando…

Geometric Langlands And The Equations Of Nahm And Bogomolny

Geometric Langlands duality relates a representation of a simple Lie group $G^\vee$ to the cohomology of a certain moduli space associated with the dual group $G$. In this correspondence, a principal $SL_2$ subgroup of $G^\vee$ makes an unexpected appearance. Why this happens can be explained using...

Descripción completa

Detalles Bibliográficos
Autor principal: Witten, Edward
Lenguaje:eng
Publicado: 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1017/S0308210509000882
http://cds.cern.ch/record/1180144
_version_ 1780916329610477568
author Witten, Edward
author_facet Witten, Edward
author_sort Witten, Edward
collection CERN
description Geometric Langlands duality relates a representation of a simple Lie group $G^\vee$ to the cohomology of a certain moduli space associated with the dual group $G$. In this correspondence, a principal $SL_2$ subgroup of $G^\vee$ makes an unexpected appearance. Why this happens can be explained using gauge theory, as we will see in this article, with the help of the equations of Nahm and Bogomolny. (Based on a lecture at Geometry and Physics: Atiyah 80, Edinburgh, April 2009.)
id cern-1180144
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
record_format invenio
spelling cern-11801442023-03-15T19:11:36Zdoi:10.1017/S0308210509000882http://cds.cern.ch/record/1180144engWitten, EdwardGeometric Langlands And The Equations Of Nahm And BogomolnyParticle Physics - TheoryGeometric Langlands duality relates a representation of a simple Lie group $G^\vee$ to the cohomology of a certain moduli space associated with the dual group $G$. In this correspondence, a principal $SL_2$ subgroup of $G^\vee$ makes an unexpected appearance. Why this happens can be explained using gauge theory, as we will see in this article, with the help of the equations of Nahm and Bogomolny. (Based on a lecture at Geometry and Physics: Atiyah 80, Edinburgh, April 2009.)Geometric Langlands duality relates a representation of a simple Lie group $G^\vee$ to the cohomology of a certain moduli space associated with the dual group $G$. In this correspondence, a principal $SL_2$ subgroup of $G^\vee$ makes an unexpected appearance. Why this happens can be explained using gauge theory, as we will see in this article, with the help of the equations of Nahm and Bogomolny. (Based on a lecture at Geometry and Physics: Atiyah 80, Edinburgh, April 2009.)arXiv:0905.4795CERN-TH-PH-2009-071CERN-PH-TH-2009-071CERN-TH-PH-2009-071-[SIC!]CERN-PH-TH-2009-071oai:cds.cern.ch:11801442009-06-01
spellingShingle Particle Physics - Theory
Witten, Edward
Geometric Langlands And The Equations Of Nahm And Bogomolny
title Geometric Langlands And The Equations Of Nahm And Bogomolny
title_full Geometric Langlands And The Equations Of Nahm And Bogomolny
title_fullStr Geometric Langlands And The Equations Of Nahm And Bogomolny
title_full_unstemmed Geometric Langlands And The Equations Of Nahm And Bogomolny
title_short Geometric Langlands And The Equations Of Nahm And Bogomolny
title_sort geometric langlands and the equations of nahm and bogomolny
topic Particle Physics - Theory
url https://dx.doi.org/10.1017/S0308210509000882
http://cds.cern.ch/record/1180144
work_keys_str_mv AT wittenedward geometriclanglandsandtheequationsofnahmandbogomolny