Cargando…
Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0
A C++ class was written for the calculation of frequentist confidence intervals using the profile likelihood method. Seven combinations of Binomial, Gaussian, Poissonian and Binomial uncertainties are implemented. The package provides routines for the calculation of upper and lower limits, sensitivi...
Autores principales: | Lundberg, J., Conrad, J., Rolke, W., Lopez, A. |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.cpc.2009.11.001 http://cds.cern.ch/record/1191778 |
Ejemplares similares
-
Reproducible Experiment Platform
por: Likhomanenko, Tatiana, et al.
Publicado: (2015) -
Basics of Feature Selection and Statistical Learning for High Energy Physics
por: Vossen, Anselm
Publicado: (2008) -
A Multivariate Training Technique with Event Reweighting
por: Yang, Hai-Jun, et al.
Publicado: (2007) -
Cosmic Ray Background Removal With Deep Neural Networks in SBND
por: Acciarri, R., et al.
Publicado: (2020) -
Reducing the dependence of the neural network function to systematic uncertainties in the input space
por: Wunsch, Stefan, et al.
Publicado: (2019)