Cargando…
The ATLAS ROBIN – A High-Performance Data-Acquisition Module
This work presents the re-configurable processor ROBIN, which is a key element of the data-acquisition-system of the ATLAS experiment, located at the new LHC at CERN. The ATLAS detector provides data over 1600 channels simultaneously towards the DAQ system. The ATLAS dataflow model follows the “PULL...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Universitätsbibliothek Mannheim
2009
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1209243 |
Sumario: | This work presents the re-configurable processor ROBIN, which is a key element of the data-acquisition-system of the ATLAS experiment, located at the new LHC at CERN. The ATLAS detector provides data over 1600 channels simultaneously towards the DAQ system. The ATLAS dataflow model follows the “PULL” strategy in contrast to the commonly used “PUSH” strategy. The data volume transported is reduced by a factor of 10, however the data must be temporarily stored at the entry to the DAQ system. The input layer consists of approx. 160 ROS read-out units comprising 1 PC and 4 ROBIN modules. Each ROBIN device acquires detector data via 3 input channels and performs local buffering. Board control is done via a 64-bit PCI interface. Event selection and data transmission runs via PCI in the baseline bus-based ROS. Alternatively, a local GE interface can take over part or all of the data traffic in the switch-based ROS, in order to reduce the load on the host PC. The performance of the ROBIN module stems from the close cooperation of a fast embedded processor with a complex FPGA. The efficient task-distribution lets the processor handle all complex management functionality, programmed in “C” while all movement of data is performed by the FPGA via multiple, concurrently operating DMA engines. The ROBIN-project was carried-out by and international team and comprises the design specification, the development of the ROBIN hardware, firmware (VHDL and C-Code), host-code (C++), prototyping, volume production and installation of 700 boards. The project was led by the author of this thesis. The hardware platform is an evolution of a FPGA processor previously designed by the author. He has contributed elementary concepts of the communication mechanisms and the “C”-coded embedded application software. He also organised and supervised the prototype and series productions including the various design reports and presentations. The results show that the ROBIN-module is able to meet its ambitious requirements of 100kHz incoming fragment rate per channel with a concurrent outgoing fragment rate of 21kHz per channel. At the system level, each ROS unit (12 channels) operates at the same rates, however for a subset of the channels only. The ATLAS DAQ system – with 640 ROBIN modules installed – has performed a successful data-taking phase at the start-up of the LHC in September. |
---|