Cargando…
Geometric analysis on the Heisenberg group and its generalizations
The theory of subRiemannian manifolds is closely related to Hamiltonian mechanics. In this book, the authors examine the properties and applications of subRiemannian manifolds that automatically satisfy the Heisenberg principle, which may be useful in quantum mechanics. In particular, the behavior o...
Autores principales: | Calin, Ovidiu, Chang, Der-Chen, Greiner, Peter |
---|---|
Lenguaje: | eng |
Publicado: |
A.M.S.
2007
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1212953 |
Ejemplares similares
-
Geometric mechanics on Riemannian manifolds: applications to partial differential equations
por: Calin, Ovidiu, et al.
Publicado: (2005) -
Harmonic analysis on the Heisenberg group
por: Thangavelu, Sundaram
Publicado: (1998) -
Generalized Heisenberg groups and Damek-Ricci harmonic spaces
por: Berndt, Jürgen, et al.
Publicado: (1995) -
Calculus on Heisenberg manifolds (AM-119)
por: Beals, Richard, et al.
Publicado: (1988) -
Geometric modeling in probability and statistics
por: Calin, Ovidiu, et al.
Publicado: (2014)