Cargando…
Neural Online Filtering Based on Preprocessed Calorimeter Data
Among LHC detectors, ATLAS aims at coping with such high event rate by designing a three-level online triggering system. The first level trigger output will be ~75 kHz. This level will mark the regions where relevant events were found. The second level will validate LVL1 decision by looking only at...
Autores principales: | Torres, R C, Ferreira de Lima, D E, Simas Filho, E F, De Seixas, J M |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1213930 |
Ejemplares similares
-
Neural Online Filtering Based on Preprocessed Calorimeter Data
por: Torres, R C, et al.
Publicado: (2009) -
Online neural trigger for optimizing data acquisition during particle beam calibration tests with calorimeters
por: Da Silva, P V M, et al.
Publicado: (2004) -
An online neural network triggering system for the Tile Calorimeter
por: Damazio, D O, et al.
Publicado: (2002) -
Data filtering in the readout of the CMS Electromagnetic Calorimeter
por: Almeida, N, et al.
Publicado: (2008) -
Data Filtering in the readout of the CMS Electromagnetic Calorimeter
por: Almeida, Nuno, et al.
Publicado: (2007)