Cargando…

Alignment of the ATLAS Inner Detector Tracking System

ATLAS is a multi purpose detector built to study proton-proton collisions, at the center of mass energy of 14 TeV, as provided by the Large Hadron Collider at CERN. ATLAS is equipped with an inner charged particle tracking system composed of silicon and drift tube based detectors. The required preci...

Descripción completa

Detalles Bibliográficos
Autor principal: Cortiana, G
Lenguaje:eng
Publicado: 2009
Materias:
Acceso en línea:http://cds.cern.ch/record/1222309
_version_ 1780918225013309440
author Cortiana, G
author_facet Cortiana, G
author_sort Cortiana, G
collection CERN
description ATLAS is a multi purpose detector built to study proton-proton collisions, at the center of mass energy of 14 TeV, as provided by the Large Hadron Collider at CERN. ATLAS is equipped with an inner charged particle tracking system composed of silicon and drift tube based detectors. The required precision for the alignment of the most sensitive coordinates of the silicon sensors is at the level of few microns, the limit being derived by the requirement that module misalignments should not worsen the resolution of the track parameter measurements by more than 20%. In these proceedings, the outline of the alignment approaches, and results obtained using real data from cosmic rays, and large scale computing simulation of physics samples, are presented. Cosmic ray data serves to derive an early set of alignment constants for the ATLAS ID before the LHC start up. The impact of the alignment on physics measurements will be discussed.
id cern-1222309
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
record_format invenio
spelling cern-12223092019-09-30T06:29:59Zhttp://cds.cern.ch/record/1222309engCortiana, GAlignment of the ATLAS Inner Detector Tracking SystemDetectors and Experimental TechniquesATLAS is a multi purpose detector built to study proton-proton collisions, at the center of mass energy of 14 TeV, as provided by the Large Hadron Collider at CERN. ATLAS is equipped with an inner charged particle tracking system composed of silicon and drift tube based detectors. The required precision for the alignment of the most sensitive coordinates of the silicon sensors is at the level of few microns, the limit being derived by the requirement that module misalignments should not worsen the resolution of the track parameter measurements by more than 20%. In these proceedings, the outline of the alignment approaches, and results obtained using real data from cosmic rays, and large scale computing simulation of physics samples, are presented. Cosmic ray data serves to derive an early set of alignment constants for the ATLAS ID before the LHC start up. The impact of the alignment on physics measurements will be discussed.ATL-INDET-PROC-2009-020oai:cds.cern.ch:12223092009-11-16
spellingShingle Detectors and Experimental Techniques
Cortiana, G
Alignment of the ATLAS Inner Detector Tracking System
title Alignment of the ATLAS Inner Detector Tracking System
title_full Alignment of the ATLAS Inner Detector Tracking System
title_fullStr Alignment of the ATLAS Inner Detector Tracking System
title_full_unstemmed Alignment of the ATLAS Inner Detector Tracking System
title_short Alignment of the ATLAS Inner Detector Tracking System
title_sort alignment of the atlas inner detector tracking system
topic Detectors and Experimental Techniques
url http://cds.cern.ch/record/1222309
work_keys_str_mv AT cortianag alignmentoftheatlasinnerdetectortrackingsystem