Cargando…
Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles
To reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles sh...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1223611 |
_version_ | 1780918245703811072 |
---|---|
author | Artoos, K Capatina, O Collette, C Guinchard, M Hauviller, C Lackner, F Pfingstner, J Schmickler, H Sylte, M Fontaine, M Coe, P Urner, D Bolzon, B Brunetti, L Deleglise, G Geffroy, N Jeremie, A |
author_facet | Artoos, K Capatina, O Collette, C Guinchard, M Hauviller, C Lackner, F Pfingstner, J Schmickler, H Sylte, M Fontaine, M Coe, P Urner, D Bolzon, B Brunetti, L Deleglise, G Geffroy, N Jeremie, A |
author_sort | Artoos, K |
collection | CERN |
description | To reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the “nanostabilization” of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization. |
id | cern-1223611 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2009 |
record_format | invenio |
spelling | cern-12236112023-07-20T15:04:09Zhttp://cds.cern.ch/record/1223611engArtoos, KCapatina, OCollette, CGuinchard, MHauviller, CLackner, FPfingstner, JSchmickler, HSylte, MFontaine, MCoe, PUrner, DBolzon, BBrunetti, LDeleglise, GGeffroy, NJeremie, AStudy of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam QuadrupolesAccelerators and Storage RingsTo reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the “nanostabilization” of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization.CERN-ATS-2009-127CLIC-Note-796oai:cds.cern.ch:12236112009-04-15 |
spellingShingle | Accelerators and Storage Rings Artoos, K Capatina, O Collette, C Guinchard, M Hauviller, C Lackner, F Pfingstner, J Schmickler, H Sylte, M Fontaine, M Coe, P Urner, D Bolzon, B Brunetti, L Deleglise, G Geffroy, N Jeremie, A Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles |
title | Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles |
title_full | Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles |
title_fullStr | Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles |
title_full_unstemmed | Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles |
title_short | Study of the Stabilization to the Nanometre Level of Mechanical Vibrations of the CLIC Main Beam Quadrupoles |
title_sort | study of the stabilization to the nanometre level of mechanical vibrations of the clic main beam quadrupoles |
topic | Accelerators and Storage Rings |
url | http://cds.cern.ch/record/1223611 |
work_keys_str_mv | AT artoosk studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT capatinao studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT collettec studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT guinchardm studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT hauvillerc studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT lacknerf studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT pfingstnerj studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT schmicklerh studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT syltem studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT fontainem studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT coep studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT urnerd studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT bolzonb studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT brunettil studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT delegliseg studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT geffroyn studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles AT jeremiea studyofthestabilizationtothenanometrelevelofmechanicalvibrationsoftheclicmainbeamquadrupoles |