Cargando…
Energy Reconstruction of Hadron Showers in the CALICE Calorimeters
The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at the future International Linear Collider. These calorimeters have been tested extensively in particle beams at CERN and at Fermilab...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/NSSMIC.2009.5402058 http://cds.cern.ch/record/1224721 |
Sumario: | The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at the future International Linear Collider. These calorimeters have been tested extensively in particle beams at CERN and at Fermilab. We present analysis results for hadronic events recorded at CERN with a SiW ECAL, a scintillator tile HCAL and a scintillator strip tail catcher, the latter two with SiPM readout, focusing both on the HCAL alone and on the complete calorimeter setup. Particular emphasis is placed on the study of the linearity of the detector response and on the single particle energy resolution. The high granularity of the detectors was used to perform first studies of software compensation based on the local shower energy density, yielding significant improvements in the energy resolution. The required calibration precision to achieve this resolution, and the effect of calibration uncertainties, for the CALICE HCAL as well as for a complete hadron calorimeter at ILC, has been studied in detail. The prospects of using minimum-ionizing track segments within hadronic showers for calibration are also discussed. |
---|