Cargando…
Geometrical interpretation of the topological recursion, and integrable string theories
Symplectic invariants introduced in math-ph/0702045 can be computed for an arbitrary spectral curve. For some examples of spectral curves, those invariants can solve loop equations of matrix integrals, and many problems of enumerative geometry like maps, partitions, Hurwitz numbers, intersection num...
Autores principales: | Eynard, Bertrand, Orantin, Nicolas |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1225628 |
Ejemplares similares
-
Topological recursion in enumerative geometry and random matrices
por: Eynard, Bertrand, et al.
Publicado: (2009) -
Chain of matrices, loop equations and topological recursion
por: Orantin, Nicolas
Publicado: (2009) -
Loop equations and topological recursion for the arbitrary-$\beta$ two-matrix model
por: Bergere, Michel, et al.
Publicado: (2011) -
Algebraic methods in random matrices and enumerative geometry
por: Eynard, Bertrand, et al.
Publicado: (2008) -
Resurgent Asymptotics of Jackiw-Teitelboim Gravity and the Nonperturbative Topological Recursion
por: Eynard, Bertrand, et al.
Publicado: (2023)