Cargando…
Functional integral for non-Lagrangian systems
A novel functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The new approach, which we call "stringy quantization," is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevA.81.022112 http://cds.cern.ch/record/1233053 |
Sumario: | A novel functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The new approach, which we call "stringy quantization," is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force $-\kappa[\dot{q}]^A$. Results for $A = 1$ are compared with those obtained in the approaches by Caldirola-Kanai, Bateman and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well. |
---|