Cargando…

Exceptional quantum subgroups for the rank two Lie algebras B2 and G2

Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Coquereaux, R., Rais, R., Tahri, E.H.
Lenguaje:eng
Publicado: 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1063/1.3476319
http://cds.cern.ch/record/1236953
_version_ 1780918618046857216
author Coquereaux, R.
Rais, R.
Tahri, E.H.
author_facet Coquereaux, R.
Rais, R.
Tahri, E.H.
author_sort Coquereaux, R.
collection CERN
description Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.
id cern-1236953
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
record_format invenio
spelling cern-12369532023-03-14T19:44:06Zdoi:10.1063/1.3476319http://cds.cern.ch/record/1236953engCoquereaux, R.Rais, R.Tahri, E.H.Exceptional quantum subgroups for the rank two Lie algebras B2 and G2Mathematical Physics and MathematicsExceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.arXiv:1001.5416CERN-PH-TH-2010-019oai:cds.cern.ch:12369532010-02-01
spellingShingle Mathematical Physics and Mathematics
Coquereaux, R.
Rais, R.
Tahri, E.H.
Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
title Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
title_full Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
title_fullStr Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
title_full_unstemmed Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
title_short Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
title_sort exceptional quantum subgroups for the rank two lie algebras b2 and g2
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1063/1.3476319
http://cds.cern.ch/record/1236953
work_keys_str_mv AT coquereauxr exceptionalquantumsubgroupsfortheranktwoliealgebrasb2andg2
AT raisr exceptionalquantumsubgroupsfortheranktwoliealgebrasb2andg2
AT tahrieh exceptionalquantumsubgroupsfortheranktwoliealgebrasb2andg2