Cargando…
Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of t...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.3476319 http://cds.cern.ch/record/1236953 |
_version_ | 1780918618046857216 |
---|---|
author | Coquereaux, R. Rais, R. Tahri, E.H. |
author_facet | Coquereaux, R. Rais, R. Tahri, E.H. |
author_sort | Coquereaux, R. |
collection | CERN |
description | Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given. |
id | cern-1236953 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2010 |
record_format | invenio |
spelling | cern-12369532023-03-14T19:44:06Zdoi:10.1063/1.3476319http://cds.cern.ch/record/1236953engCoquereaux, R.Rais, R.Tahri, E.H.Exceptional quantum subgroups for the rank two Lie algebras B2 and G2Mathematical Physics and MathematicsExceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.arXiv:1001.5416CERN-PH-TH-2010-019oai:cds.cern.ch:12369532010-02-01 |
spellingShingle | Mathematical Physics and Mathematics Coquereaux, R. Rais, R. Tahri, E.H. Exceptional quantum subgroups for the rank two Lie algebras B2 and G2 |
title | Exceptional quantum subgroups for the rank two Lie algebras B2 and G2 |
title_full | Exceptional quantum subgroups for the rank two Lie algebras B2 and G2 |
title_fullStr | Exceptional quantum subgroups for the rank two Lie algebras B2 and G2 |
title_full_unstemmed | Exceptional quantum subgroups for the rank two Lie algebras B2 and G2 |
title_short | Exceptional quantum subgroups for the rank two Lie algebras B2 and G2 |
title_sort | exceptional quantum subgroups for the rank two lie algebras b2 and g2 |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1063/1.3476319 http://cds.cern.ch/record/1236953 |
work_keys_str_mv | AT coquereauxr exceptionalquantumsubgroupsfortheranktwoliealgebrasb2andg2 AT raisr exceptionalquantumsubgroupsfortheranktwoliealgebrasb2andg2 AT tahrieh exceptionalquantumsubgroupsfortheranktwoliealgebrasb2andg2 |