Cargando…

Species and Strings

Based on well-known properties of semi-classical black holes, we show that weakly-coupled string theory can be viewed as a theory of N = 1/g_s^2 particle species. This statement is a string theoretic realization of the fact that the fundamental scale in any consistent D-dimensional theory of gravity...

Descripción completa

Detalles Bibliográficos
Autores principales: Dvali, Gia, Gomez, Cesar
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: 2010
Materias:
Acceso en línea:http://cds.cern.ch/record/1260911
_version_ 1780919986544443392
author Dvali, Gia
Gomez, Cesar
author_facet Dvali, Gia
Gomez, Cesar
author_sort Dvali, Gia
collection CERN
description Based on well-known properties of semi-classical black holes, we show that weakly-coupled string theory can be viewed as a theory of N = 1/g_s^2 particle species. This statement is a string theoretic realization of the fact that the fundamental scale in any consistent D-dimensional theory of gravity is not the Planck length l_D, but rather the species scale L_N = N^1/(D-2) l_D. Using this fact, we derive the bound on semi-classical black hole entropy in any consistent theory of gravity as S > N, which when applied to string theory provides additional evidence for the former relation. This counting also shows that the Bekenstein-Hawking entropy can be viewed as the entanglement entropy, without encountering any puzzle of species. We demonstrate that the counting of species extends to the M-theory limit. The role of the species scale is now played by the eleven-dimensional Planck length, beyond which resolution of distances is gravitationally-impossible. The conclusion is, that string theory is a theory of species and gets replaced by a pure gravitational theory in the limit when species become strongly coupled and decouple.
format info:eu-repo/semantics/article
id cern-1260911
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
record_format invenio
spelling cern-12609112019-09-30T06:29:59Z http://cds.cern.ch/record/1260911 eng Dvali, Gia Gomez, Cesar Species and Strings Particle Physics - Theory Based on well-known properties of semi-classical black holes, we show that weakly-coupled string theory can be viewed as a theory of N = 1/g_s^2 particle species. This statement is a string theoretic realization of the fact that the fundamental scale in any consistent D-dimensional theory of gravity is not the Planck length l_D, but rather the species scale L_N = N^1/(D-2) l_D. Using this fact, we derive the bound on semi-classical black hole entropy in any consistent theory of gravity as S > N, which when applied to string theory provides additional evidence for the former relation. This counting also shows that the Bekenstein-Hawking entropy can be viewed as the entanglement entropy, without encountering any puzzle of species. We demonstrate that the counting of species extends to the M-theory limit. The role of the species scale is now played by the eleven-dimensional Planck length, beyond which resolution of distances is gravitationally-impossible. The conclusion is, that string theory is a theory of species and gets replaced by a pure gravitational theory in the limit when species become strongly coupled and decouple. info:eu-repo/grantAgreement/EC/FP7/226371 info:eu-repo/semantics/openAccess Education Level info:eu-repo/semantics/article info:eu-repo/grantAgreement/EC/FP7/237920 info:eu-repo/semantics/openAccess Education Level info:eu-repo/semantics/article http://cds.cern.ch/record/1260911 2010-04-22
spellingShingle Particle Physics - Theory
Dvali, Gia
Gomez, Cesar
Species and Strings
title Species and Strings
title_full Species and Strings
title_fullStr Species and Strings
title_full_unstemmed Species and Strings
title_short Species and Strings
title_sort species and strings
topic Particle Physics - Theory
url http://cds.cern.ch/record/1260911
http://cds.cern.ch/record/1260911
work_keys_str_mv AT dvaligia speciesandstrings
AT gomezcesar speciesandstrings