Cargando…
Development of a High Precision Axial 3-D PET for Brain Imaging
We describe a PET device based on a novel method to extract the coordinates of the interaction point of the 511 keV γ rays from 100 mm long and thin LYSO (Lutetium Yttrium OxyorthoSilicate) scintillator bars, positioned axially in the tomograph. The coordinate along the hit crystal is measured by us...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysbps.2009.10.026 http://cds.cern.ch/record/1260967 |
_version_ | 1780919989214117888 |
---|---|
author | Bolle, E Braem, A Casella, C Chesi, E Clinthorne, N Cochran, E De Leo, R Dissertori, G Djambazov, L Honscheid, K Huh, S Johnson, I Joram, C Kagan, H Lacasta, C Lustermann, W Meddi, F Nappi, E Nessi-Tedaldi, F Oliver, J F Pauss, F Rafecas, M Renker, D Rudge, A Schinzel, D Schneider, T Séguinot, J Smith, S Solevi, P Stapnes, S Vilardi, I Weilhammer, P |
author_facet | Bolle, E Braem, A Casella, C Chesi, E Clinthorne, N Cochran, E De Leo, R Dissertori, G Djambazov, L Honscheid, K Huh, S Johnson, I Joram, C Kagan, H Lacasta, C Lustermann, W Meddi, F Nappi, E Nessi-Tedaldi, F Oliver, J F Pauss, F Rafecas, M Renker, D Rudge, A Schinzel, D Schneider, T Séguinot, J Smith, S Solevi, P Stapnes, S Vilardi, I Weilhammer, P |
author_sort | Bolle, E |
collection | CERN |
description | We describe a PET device based on a novel method to extract the coordinates of the interaction point of the 511 keV γ rays from 100 mm long and thin LYSO (Lutetium Yttrium OxyorthoSilicate) scintillator bars, positioned axially in the tomograph. The coordinate along the hit crystal is measured by using a hodoscope of Wave Length Shifting (WLS) plastic strips mounted perpendicularly to each plane of scintillators. As photodetectors, new Geiger mode Avalanche PhotoDetectors (G-APDs) with integrated electronics are being used to detect both the hit crystal in a block (x and y coordinates) and the interaction point in the crystal (z coordinate) through the light escaping from the crystal and transmitted to the WLS strips. In this way, the γ interaction point can be determined with a spatial resolution of few cubic millimeters down to a minimum deposited energy of about 50 keV, resulting in a volumetric precision very close to the limits imposed by the physics of the positron annihilation. The method allows to increase the detection efficiency without affecting the spatial resolution by adding scintillator planes in the radial direction. A demonstrator scanner, based on two matrices of 8 ×6 LYSO crystals and 312 WLS strips, slotted in between the crystals, is under construction. Preliminary results from the feasibility studies of the various components will be presented. |
id | cern-1260967 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2009 |
record_format | invenio |
spelling | cern-12609672019-09-30T06:29:59Zdoi:10.1016/j.nuclphysbps.2009.10.026http://cds.cern.ch/record/1260967engBolle, EBraem, ACasella, CChesi, EClinthorne, NCochran, EDe Leo, RDissertori, GDjambazov, LHonscheid, KHuh, SJohnson, IJoram, CKagan, HLacasta, CLustermann, WMeddi, FNappi, ENessi-Tedaldi, FOliver, J FPauss, FRafecas, MRenker, DRudge, ASchinzel, DSchneider, TSéguinot, JSmith, SSolevi, PStapnes, SVilardi, IWeilhammer, PDevelopment of a High Precision Axial 3-D PET for Brain ImagingDetectors and Experimental TechniquesWe describe a PET device based on a novel method to extract the coordinates of the interaction point of the 511 keV γ rays from 100 mm long and thin LYSO (Lutetium Yttrium OxyorthoSilicate) scintillator bars, positioned axially in the tomograph. The coordinate along the hit crystal is measured by using a hodoscope of Wave Length Shifting (WLS) plastic strips mounted perpendicularly to each plane of scintillators. As photodetectors, new Geiger mode Avalanche PhotoDetectors (G-APDs) with integrated electronics are being used to detect both the hit crystal in a block (x and y coordinates) and the interaction point in the crystal (z coordinate) through the light escaping from the crystal and transmitted to the WLS strips. In this way, the γ interaction point can be determined with a spatial resolution of few cubic millimeters down to a minimum deposited energy of about 50 keV, resulting in a volumetric precision very close to the limits imposed by the physics of the positron annihilation. The method allows to increase the detection efficiency without affecting the spatial resolution by adding scintillator planes in the radial direction. A demonstrator scanner, based on two matrices of 8 ×6 LYSO crystals and 312 WLS strips, slotted in between the crystals, is under construction. Preliminary results from the feasibility studies of the various components will be presented.oai:cds.cern.ch:12609672009 |
spellingShingle | Detectors and Experimental Techniques Bolle, E Braem, A Casella, C Chesi, E Clinthorne, N Cochran, E De Leo, R Dissertori, G Djambazov, L Honscheid, K Huh, S Johnson, I Joram, C Kagan, H Lacasta, C Lustermann, W Meddi, F Nappi, E Nessi-Tedaldi, F Oliver, J F Pauss, F Rafecas, M Renker, D Rudge, A Schinzel, D Schneider, T Séguinot, J Smith, S Solevi, P Stapnes, S Vilardi, I Weilhammer, P Development of a High Precision Axial 3-D PET for Brain Imaging |
title | Development of a High Precision Axial 3-D PET for Brain Imaging |
title_full | Development of a High Precision Axial 3-D PET for Brain Imaging |
title_fullStr | Development of a High Precision Axial 3-D PET for Brain Imaging |
title_full_unstemmed | Development of a High Precision Axial 3-D PET for Brain Imaging |
title_short | Development of a High Precision Axial 3-D PET for Brain Imaging |
title_sort | development of a high precision axial 3-d pet for brain imaging |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1016/j.nuclphysbps.2009.10.026 http://cds.cern.ch/record/1260967 |
work_keys_str_mv | AT bollee developmentofahighprecisionaxial3dpetforbrainimaging AT braema developmentofahighprecisionaxial3dpetforbrainimaging AT casellac developmentofahighprecisionaxial3dpetforbrainimaging AT chesie developmentofahighprecisionaxial3dpetforbrainimaging AT clinthornen developmentofahighprecisionaxial3dpetforbrainimaging AT cochrane developmentofahighprecisionaxial3dpetforbrainimaging AT deleor developmentofahighprecisionaxial3dpetforbrainimaging AT dissertorig developmentofahighprecisionaxial3dpetforbrainimaging AT djambazovl developmentofahighprecisionaxial3dpetforbrainimaging AT honscheidk developmentofahighprecisionaxial3dpetforbrainimaging AT huhs developmentofahighprecisionaxial3dpetforbrainimaging AT johnsoni developmentofahighprecisionaxial3dpetforbrainimaging AT joramc developmentofahighprecisionaxial3dpetforbrainimaging AT kaganh developmentofahighprecisionaxial3dpetforbrainimaging AT lacastac developmentofahighprecisionaxial3dpetforbrainimaging AT lustermannw developmentofahighprecisionaxial3dpetforbrainimaging AT meddif developmentofahighprecisionaxial3dpetforbrainimaging AT nappie developmentofahighprecisionaxial3dpetforbrainimaging AT nessitedaldif developmentofahighprecisionaxial3dpetforbrainimaging AT oliverjf developmentofahighprecisionaxial3dpetforbrainimaging AT paussf developmentofahighprecisionaxial3dpetforbrainimaging AT rafecasm developmentofahighprecisionaxial3dpetforbrainimaging AT renkerd developmentofahighprecisionaxial3dpetforbrainimaging AT rudgea developmentofahighprecisionaxial3dpetforbrainimaging AT schinzeld developmentofahighprecisionaxial3dpetforbrainimaging AT schneidert developmentofahighprecisionaxial3dpetforbrainimaging AT seguinotj developmentofahighprecisionaxial3dpetforbrainimaging AT smiths developmentofahighprecisionaxial3dpetforbrainimaging AT solevip developmentofahighprecisionaxial3dpetforbrainimaging AT stapness developmentofahighprecisionaxial3dpetforbrainimaging AT vilardii developmentofahighprecisionaxial3dpetforbrainimaging AT weilhammerp developmentofahighprecisionaxial3dpetforbrainimaging |