Cargando…

Nearly Degenerate Gauginos and Dark Matter at the LHC

Motivated by dark-matter considerations in supersymmetric theories, we investigate in a fairly model-independent way the detection at the LHC of nearly degenerate gauginos with mass differences between a few GeV and about 30 GeV. Due to the degeneracy of gaugino states, the conventional leptonic sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Giudice, Gian F, Han, Tao, Wang, Kai, Wang, Lian-Tao
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: Phys. Rev. D 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.81.115011
http://cds.cern.ch/record/1262406
_version_ 1780920004033642496
author Giudice, Gian F
Han, Tao
Wang, Kai
Wang, Lian-Tao
author_facet Giudice, Gian F
Han, Tao
Wang, Kai
Wang, Lian-Tao
author_sort Giudice, Gian F
collection CERN
description Motivated by dark-matter considerations in supersymmetric theories, we investigate in a fairly model-independent way the detection at the LHC of nearly degenerate gauginos with mass differences between a few GeV and about 30 GeV. Due to the degeneracy of gaugino states, the conventional leptonic signals are likely lost. We first consider the leading signal from gluino production and decay. We find that it is quite conceivable to reach a large statistical significance for the multi-jet plus missing energy signal with an integrated luminosity about 50 pb^-1 (50 fb^-1) for a gluino mass of 500 GeV (1 TeV). If gluinos are not too heavy, less than about 1.5 TeV, this channel can typically probe gaugino masses up to about 100 GeV below the gluino mass. We then study the Drell-Yan type of gaugino pair production in association with a hard QCD jet, for gaugino masses in the range of 100-150 GeV. The signal observation may be statistically feasible with about 10 fb^-1, but systematically challenging due to the lack of distinctive features for the signal distributions. By exploiting gaugino pair production through weak boson fusion, signals of large missing energy plus two forward-backward jets may be observable at a 4-6\sigma level above the large SM backgrounds with an integrated luminosity of 100-300 fb^-1. Finally, we point out that searching for additional isolated soft muons in the range p_T ~3-10 GeV in the data samples discussed above may help to enrich the signal and to control the systematics. Significant efforts are made to explore the connection between the signal kinematics and the relevant masses for the gluino and gauginos, to probe the mass scales of the superpartners, in particular the LSP dark matter.
format info:eu-repo/semantics/article
id cern-1262406
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
publisher Phys. Rev. D
record_format invenio
spelling cern-12624062019-09-30T06:29:59Z doi:10.1103/PhysRevD.81.115011 http://cds.cern.ch/record/1262406 eng Giudice, Gian F Han, Tao Wang, Kai Wang, Lian-Tao Nearly Degenerate Gauginos and Dark Matter at the LHC Particle Physics - Phenomenology Motivated by dark-matter considerations in supersymmetric theories, we investigate in a fairly model-independent way the detection at the LHC of nearly degenerate gauginos with mass differences between a few GeV and about 30 GeV. Due to the degeneracy of gaugino states, the conventional leptonic signals are likely lost. We first consider the leading signal from gluino production and decay. We find that it is quite conceivable to reach a large statistical significance for the multi-jet plus missing energy signal with an integrated luminosity about 50 pb^-1 (50 fb^-1) for a gluino mass of 500 GeV (1 TeV). If gluinos are not too heavy, less than about 1.5 TeV, this channel can typically probe gaugino masses up to about 100 GeV below the gluino mass. We then study the Drell-Yan type of gaugino pair production in association with a hard QCD jet, for gaugino masses in the range of 100-150 GeV. The signal observation may be statistically feasible with about 10 fb^-1, but systematically challenging due to the lack of distinctive features for the signal distributions. By exploiting gaugino pair production through weak boson fusion, signals of large missing energy plus two forward-backward jets may be observable at a 4-6\sigma level above the large SM backgrounds with an integrated luminosity of 100-300 fb^-1. Finally, we point out that searching for additional isolated soft muons in the range p_T ~3-10 GeV in the data samples discussed above may help to enrich the signal and to control the systematics. Significant efforts are made to explore the connection between the signal kinematics and the relevant masses for the gluino and gauginos, to probe the mass scales of the superpartners, in particular the LSP dark matter. info:eu-repo/grantAgreement/EC/FP7/237920 info:eu-repo/semantics/openAccess Education Level info:eu-repo/semantics/article http://cds.cern.ch/record/1262406 Phys. Rev. D Phys. Rev. D, (2010) pp. 115011 2010-04-29
spellingShingle Particle Physics - Phenomenology
Giudice, Gian F
Han, Tao
Wang, Kai
Wang, Lian-Tao
Nearly Degenerate Gauginos and Dark Matter at the LHC
title Nearly Degenerate Gauginos and Dark Matter at the LHC
title_full Nearly Degenerate Gauginos and Dark Matter at the LHC
title_fullStr Nearly Degenerate Gauginos and Dark Matter at the LHC
title_full_unstemmed Nearly Degenerate Gauginos and Dark Matter at the LHC
title_short Nearly Degenerate Gauginos and Dark Matter at the LHC
title_sort nearly degenerate gauginos and dark matter at the lhc
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.81.115011
http://cds.cern.ch/record/1262406
http://cds.cern.ch/record/1262406
work_keys_str_mv AT giudicegianf nearlydegenerategauginosanddarkmatteratthelhc
AT hantao nearlydegenerategauginosanddarkmatteratthelhc
AT wangkai nearlydegenerategauginosanddarkmatteratthelhc
AT wangliantao nearlydegenerategauginosanddarkmatteratthelhc