Cargando…
Metamaterials for novel X- or gamma-ray detector designs
In the majority of X and gamma ray conversion detector heads there is generally a trade-off between the spatial and the energy resolution, as a good spatial resolution requires a high segmentation whereas a good energy resolution is obtained in a large enough detector volume to contain all the casca...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1267945 |
Sumario: | In the majority of X and gamma ray conversion detector heads there is generally a trade-off between the spatial and the energy resolution, as a good spatial resolution requires a high segmentation whereas a good energy resolution is obtained in a large enough detector volume to contain all the cascade interactions generated by the incoming particle. The quest for better spatial resolution in all three dimensions for the majority of applications (High-energy physics and particle detectors, Spectrometry of low energy gamma-quanta, Medical imaging, Homeland security, Space applications) may lead to a huge increase of the number of readout channels, with all the associated problems of connectivity, detector integration and heat dissipation. This paper explores the potential of recent progress in the field of crystallogenesis, quantum dots and photonics crystals towards a new concept of X- and gamma-ray detector based on metamaterials to simultaneously record with high precision the maximum of information of the cascade conversion process such as its direction, the spatial distribution of the energy deposition and its composition in terms of electromagnetic, charged and neutral hadron contents (for high energy). |
---|