Cargando…
Advanced Markov chain Monte Carlo methods: learning from past samples
This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem hav...
Autores principales: | Liang, Faming, Liu, Chuanhai, Carrol, Raymond J |
---|---|
Lenguaje: | eng |
Publicado: |
Wiley
2010
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1271092 |
Ejemplares similares
-
Markov chain Monte Carlo in practice
por: Gilks, W R, et al.
Publicado: (1995) -
Handbook of Markov chain Monte Carlo
por: Brooks, Steve
Publicado: (2011) -
Markov chains: analytic and Monte Carlo computations
por: Graham, Carl
Publicado: (2014) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Markov chains: Gibbs fields, Monte Carlo simulation, and queues
por: Brémaud, P
Publicado: (2001)