Cargando…
Ternary "Quaternions" and Ternary TU(3) algebra
To construct ternary "quaternions" following Hamilton we must introduce two "imaginary "units, $q_1$ and $q_2$ with propeties $q_1^n=1$ and $q_2^m=1$. The general is enough difficult, and we consider the $m=n=3$. This case gives us the example of non-Abelian groupas was in Hamilt...
Autor principal: | Volkov, Guennady |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1275010 |
Ejemplares similares
-
Topics in quaternion linear algebra
por: Rodman, Leiba
Publicado: (2014) -
Quaternions and Cayley numbers: algebra and applications
por: Ward, J P
Publicado: (1997) -
Quaternions, Clifford algebras and relativistic physics
por: Girard, Patrick R
Publicado: (2007) -
Division algebras: octonions, quaternions, complex numbers and the algebraic design of physics
por: Dixon, Geoffrey M
Publicado: (1994) -
Quaternions
por: Griffin, Sandra
Publicado: (2017)