Cargando…
On the complexifications of the Euclidean $R^n$ spaces and the n-dimensional generalization of Pithagore theorem
We will discuss the following results C_n complexification of R(n) spaces, C_n structure and the invariant surfaces C_n holomorphicity and harmonicity. We also consider the link between C_n holomorphicity and the origin of spin 1/n. In our approach appears a new geometry and N-ary algebras/symmetrie...
Autor principal: | Volkov, Guennady |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1275012 |
Ejemplares similares
-
Stable probability measures on euclidean spaces and on locally compact groups: structural properties and limit theorems
por: Hazod, Wilfried, et al.
Publicado: (2001) -
Non-Euclidean geometry and curvature: two-dimensional spaces
por: Cannon, James W
Publicado: (2017) -
Hardy spaces on the Euclidean space
por: Uchiyama, Akihito
Publicado: (2001) -
Calculus and analysis in Euclidean space
por: Shurman, Jerry
Publicado: (2016) -
Perfect lattices in Euclidean spaces
por: Martinet, Jacques
Publicado: (2003)